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biomarker - definition

« “characteristic that is objectively measured and
evaluated as an indicator of normal biological

processes, pathogenic processes or pharmacological
responses to a therapeutic intervention” (1)

« measurable & differentially regulated 7!



biomarker - definition

« “characteristic that is objectively measured and
evaluated as an indicator of normal biological

processes, pathogenic processes or pharmacological
responses to a therapeutic intervention” (1)

« measurable & differentially regulated 7!

+ valid (defined end-point & study population) (2)
+ reproducible, accurate and unbiased

+ generalizable to new samples

+ easy accessible samples (e.g. blood)
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In cancer research and in the clinic, biomarker assays can be used to
not only identify the presence of a tumour, but also to determine its
stage, subtype, and ability to respond to therapy. Biomarkers are
therefore invaluable tools for cancer detection, diagnosis, patient
prognosis and treatment selection. This special Focus issue of Nature
Reviews Cancer discusses issues surrounding important genetic,
epigenetic and protein biomarkers of cancer, including how these can
be used to better understand tumour formation and to develop new
therapeutic approaches.




blomarker - applications

" disease detection
* diagnosis: stage, subtype
" treatment selection and monitoring

" prognosis

—ll

personalized medicine
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blosignatures - 2D examples

slc39a12

mouse cell culture: pluripotent vs non-pluripotent

irc3
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human brain tissue: Alzheimer disease vs healthy
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blosignatures - in the clinics

Table 1: Examples of recent clinical-grade molecular profiles for diagnosis and personalized medicine

Company Product name Dfsea;_:;/g loua Purpose Website
; . Risk assessment for the recurrence of distant hitp://usa.agendia.com/en/mam
Agendia MammaPrint Breast cancer metastasis in a breast cancer patient. maprint.html
Quantitative determination of the expression level of . .
Agendia TargetPrint Breast cancer estrogen receptor, progesteron receptor and HER2 hlr:si/a_ifs.aqendla.com/enflarqei
genes. This product is supplemental to MammaPrint. print.him!
Agendia CupPrint Cancer Determination of the origin of the primary tumor. rr:tt%:{i;clnw.aqendla.com/en/cuppr
; . Classification of ER-positive and ER-negative breast
gg’:g;fﬁ; g;‘gg;tssiﬁer Breast cancer cancers into expression-based subtypes that more http://www.bioclassifier.com
accurately predict patient outcome.
Insight Dx Breast
Cancer Profile
(formely GeneRx . I
Clarient Breast Cancer Breast cancer Prediction of disease recurrence risk. Ih"p'//“,?“ 'b"' ‘réjlilg‘e‘glmc.com/defau
Profile by t.aspx?tabid=
Prediction
Sciences)
Prostate Gene . L
Clarient Expression Prostate cancer | Diagnosis of grade 3 or higher prostate cancer. h}lp.//wv;lw.g_lsnimmc.com/Defa
Profile ult.aspx?tabid=403
Prediction RapidResponse c- Identification of the patients that are safe to receive http://www.predict.net/Prediction
Sciences Fn Test Stroke tPA and those at high risk for HT, to help guide the Sciences/Stroke. html
physician’s treatment decision. :
Individualized prediction of chemotherapy benefit
Genomic and 10-year distant recurrence to inform adjuvant ;
Health OncotypeDx Breast cancer treatment decisions in certain women with early- hitp://www.oncoty pedx.com/
stage breast cancer.
bioTheranostics X .
(previously CancerTYPE ID Cancer Classification of 39 types of cancer. t‘jﬁ?;ffn m,',i\i'iirfﬂfﬁf)mlc-ryplz
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biomarker/biosignature - problems

e part |: heterogeneous tissues
(= mixtures of cell types)

« part Il: pooled sample designs
(= mixtures of individual samples)
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biomarker/biosignature - problems

e part |: heterogeneous tissues
(= mixtures of cell types)

« part Il: pooled sample designs
(= mixtures of individual samples)
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blood as heterogeneous tissue:

cell type proportion [%]

samples of blood

other




case study

control patients
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case study

control patients
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case study

control patients

blood

Microarray Fluometry

tuberculosis patients .

gene expression

blood cell type proportions
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experimental study
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case study - results: gene-expression
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10°

104

B lymphocyte

specific —
gene
103
102

low

gene
in pa

-expression
tients

monocyte

specific
gene

in pat

-expreq
ients

ssion|

1

02

103

104

10°

v

patients

19



case study - results: cell counting

40 -
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this is the problem :

cell-type proportions cell-type specific gene expression

+

microarray results



possible cases

e simplest:

e problematic:

e Worst:

cell-type specific expression

cell-type proportions measured
iIndependency

non-specific expression
proportions not measured
iIndependency

expression dependent
on proportions
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simplest case
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gquantitative model

Cell type proportion
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CD 20 expression vs B-cell proportion

1

gene expression relative to reference pool

0
|

regressions

6
|
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|
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|
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I
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|

controls
patients

T T T T T
0 5 10 15 20

T T
25 30

proportion of B Cells

Response!

Of Sum Sq Mean 5 F value
Cells 1 10,1993 11,1993 48,906
Interakt 1 0,120 0,120 0,5%
Residuals 13 2,9763 0,290

Pr()F)

3, 4%e-0p *

0,4763

CD 64 expression vs monocytes proportion

gene expression relative to reference pool

VAN

controls
patients

T T T T T
0 10 20 30 40

T T
50 60

proportion of monocytes

Response; y
O Sun Sq Mean Sq F value

Pr(F)

Cells 1 13,5903 13,5903 9,541

0007621 *

Interakt 1 10,4107 10,4103 7,616

0,016233 *

Residuals 13 17,7693 1, 3669
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experimental validation
(on new samples):

 single cell gPCR

* single cell protein assay
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problematic case

27



more realistic assumptions :

e non-specific gene expression
(most genes expressed in all cell types)

« cell types: proportions unknown

* iIndependence
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existing approaches

« Venet et al, Bioinf 2001
e Lahdesmaki et al, BMC Bioinf 2005

‘ de-composition
of measured gene expression signals

non-negative matrix factorization

“deconfounding” »



deconfounding

sample k

Proportion cell type “c” in k™ sample

/

¥ = apat + (1 — ag)z’.

\

Gene I Proportion cell type “I” Gene expression
in k" sample in cell type “I”

Measured intensity _
Gene expression

in cell type “c”
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Genes

Samples

measured
microarray signals

deconfounding

1..
1
1
Samples
1
S * C
n
Celltypes
n
Genes
cell-type cell-type proportions
specific expression for all samples

profiles
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Normalization on I:

genes

Z I';= const.

column sums

constraints

Constraints for
S:

S, >0

l

genes

Z S =const.

column sums

Constraints for C:

C,>0

celltypes

Z Ck]_]‘
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experimental validation
of the deconfounding approach
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deconfounding at work :

* recovering cell type specific gene expression

e recovering cell type proportions
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estimated gene expression profile



validation: cell type proportions
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original CD3 proportions (TB)

experimental data

36



does “deconfounding” help
for detection of
valid differential gene expression 777

37



does “deconfounding” help
for detection of
valid differential gene expression 777

simulation study
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detected diff. expr. genes [%]
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detected diff. expr. genes [%]

CD3: UP / other: DOWN
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does “deconfounding” help
for detection of
valid differential gene expression 777

yes (it seems)
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approaching screening for
biosignatures
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approaching screening for
biosighatures

« problem:

- sample variability is already used for
estimating the non-negative factorization
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approaching screening for
biosighatures

 problem:

- sample variability is already used for
estimating the non-negative factorization

 possible solutions:

1 predicting cell-type proportions for a new
sample, measuring distance to estimated
profiles with the same cell-type
proportions

Repsilber et al., BMC Bioinformatics 2010
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approaching screening for
biosighatures

 problem:

- sample variability is already used for
estimating the non-negative factorization

 possible solutions:

1 predicting cell-type proportions for a new
sample, measuring distance to estimated
profiles with the same cell-type
proportions

2 estimating sample variability by
substracting mean values cell-type-wise -
followed by statistical learning
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STEP 1

measured data;

group A {

solution 2

after factorization:

cell type specific
geEne expression

cell type proportion

1 2
gene 1 @ .- sample
gene 2
gene 3 |:| . g a b
gene 4 DI:I = 2 1 109 40%
e/ 2 B 8 2 [p0%q60%
gene 7, I:I -
0 @ .- sample
group B — =
o) a,b
0 = o
0 0 .- 2 1 Eodd70%
IZII:I — T 2 p0%q30%

differential gene expression
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solution 2

STEP 2
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simulated, CT 1, gene 11
8

Results
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worst case
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worst case

— next time

52



)

biomarker/biosignature - problems

e part |: heterogeneous tissues
(= mixtures of cell types)

« part Il: pooled sample designs
(= mixtures of individual samples)
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pooling design

design | design Il (pooled subjects)
class A class B class A class B
subjects @ .. @ @® ... @ .‘Q_,_.\I/. .\I“\I/‘
® ... © ® ... ©

ol

arrays

Investigated pool sizes: 1(non-pooled), 2, 3,5



advice:

£ A

The design of a classification
study, like for biomarker search,
should not consist of pooled
samples, because data Is required
at the "individual level”. y

Kerr 2003
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objectives
e find differences in screening methods

regarding

- prediction error minimization

- finding the true underlying features
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data I: simulated

gene expression g-

c) scenario 3: linear pattern

gene expression g1

d) scenario 4: circle pattern
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data Il: experimental

e cancer gene expression studies

- Leukemia (Golub et al., 1999)

- Prostate 1 (Singh et al., 2002)

- Prostate 2 (Lapointe et al., 2004)

- Breast Cancer (van't Veer et al., 2002)
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methods

e svm (linear, radial)

« Random Forest

e t-test-filter + LDA

» (P)PLS-DA + LDA
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mean prediction error
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simulation results - prediction error
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scenario 1: differentially expressed genes




experimental results - prediction error

a)

mean prediction error

mean prediction error
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a)
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simulation results -

10 informative simulated features b) 100 informative simulated features
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take home



take home:

e avoid heterogeneous tissues and
avoid sample pooling !
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take home:

e avoid heterogeneous tissues and
avoid sample pooling !

e if not avoidable:
- look for huge effects

- try source decomposition methods
- try methods robust for pooling effects
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take home:

e avoid heterogeneous tissues and
avoid sample pooling !

e if not avoidable:

- look for huge effects
- try source decomposition methods
- try methods robust for pooling effects

* validate honestly!
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» taking questions!
e repsilber@fbn-dummerstorf.de



