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● “characteristic that is objectively measured and 
evaluated as an indicator of normal biological 
processes, pathogenic processes or pharmacological 
responses to a therapeutic intervention” (1)

● measurable & differentially regulated ?!

     

(1) Biomarkers definitions Workgroup, Clin. Pharmacol. Ther. 69, 2001

biomarker – definition
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● “characteristic that is objectively measured and 
evaluated as an indicator of normal biological 
processes, pathogenic processes or pharmacological 
responses to a therapeutic intervention” (1)

● measurable & differentially regulated ?!

+ valid (defined end-point & study population) (2)

+ reproducible, accurate and unbiased

+ generalizable to new samples

+ easy accessible samples (e.g. blood)

(1) Biomarkers definitions Workgroup, Clin. Pharmacol. Ther. 69, 2001
(2) Wacholder, S. et al., Am J Epidemiol 135, 1992

biomarker – definition



nature reviews cancer, Feb. 2006



biomarker – applications

 disease detection

 diagnosis: stage, subtype

 treatment selection and monitoring

 prognosis

personalized medicine

nature reviews cancer, Feb. 2006



biomarker – screening



sometimes: no univariate “profiles”
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→ “biosignature”
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biosignatures – 2D examples

mouse cell culture: pluripotent vs non-pluripotent human brain tissue: Alzheimer disease vs healthy

cooperation: Lena Scheubert & Georg Fuellen, IMIBA, Rostock University
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Aliferis et al., 2010

biosignatures – in the clinics
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biomarker/biosignature – problems

● part I: heterogeneous  tissues
(= mixtures of cell types)

● part II: pooled  sample  designs
(= mixtures of individual samples)
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biomarker/biosignature – problems

● part I: heterogeneous  tissues
(= mixtures of cell types)

● part II: pooled  sample  designs
(= mixtures of individual samples)



blood as heterogeneous tissue: sample heterogeneity
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case study
control patients

tuberculosis patients

blood

blood
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case study
control patients

tuberculosis patients

blood

blood

Microarray

gene expression
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case study
control patients

tuberculosis patients

blood

blood

Microarray Fluometry

gene expression

cell type proportions
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healthy contacts (30)

TB patients (30)

blood

blood

Microarray Fluometry
FACS

• Gene expression
• Cell type proportions
• sorted cells
 (CD3,others)

experimental study

MPIIB, Dept. Immunology, Prof. Kaufmann & Dr. Jacobsen
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case study – results: gene-expression
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case study – results: cell counting



this is the problem :

microarray results 

cell-type proportions cell-type specific gene expression

+
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possible cases

● simplest: cell-type specific expression
cell-type proportions measured
independency

● problematic: non-specific expression
proportions not measured
independency

● worst: expression dependent 
on proportions
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simplest case
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quantitative model

y = ß
0
 + ß

1
·p + ß

2
·g*p

Group models:
 

g=0, controls:
y = ß

0
 + ß

1
·p + e

g=1, patients:
y = ß

0
 + (ß

1
+ ß

2
)·p + e

Jacobsen, Repsilber et al. MIM 2006

m
ic

ro
ar

ra
y 

si
gn

al
m

ea
su

re
d 

m
ic

ro
ar

ra
y 

si
gn

al



25

regressions

CD 20 expression vs B-cell proportion CD 64 expression vs monocytes proportion
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experimental validation
(on new samples):

● single cell qPCR

● single cell protein assay
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problematic case
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● non-specific gene expression
(most genes expressed in all cell types)

● cell types: proportions unknown

● independence 

more realistic assumptions :
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● Venet et al, Bioinf 2001
● Lahdesmaki et al, BMC Bioinf 2005

existing approaches

de-composition
of measured gene expression signals

non-negative matrix factorization

“deconfounding”
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deconfounding

Gene i

Measured intensity

 sample k

Proportion cell type “c” in kth sample

Proportion cell type “l” 
in kth sample

Gene expression
in cell type “l”

Gene expression
in cell type “c”

Lahdesmaki et al., 2005
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Venet et al., 2001
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constraints

Constraints for 
S:

S ik≥0 C kj≥0

∑
i

ngenes

S ik=const. ∑
k

ncell types

C kj=1∑
i

ngenes

I ij=const.

Normalization on I: Constraints for C:

column sums column sums
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experimental validation
of the deconfounding approach
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deconfounding at work :

● recovering cell type specific gene expression

●  recovering cell type proportions
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validation: gene expression profiles

cell type 1 cell type 2

                     
                              estimated gene expression profile  
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validation: cell type proportions

original CD3 proportions (TB)

experimental data
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does “deconfounding” help
for detection of

valid differential gene expression ???
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does “deconfounding” help
for detection of

valid differential gene expression ???

simulation study
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does “deconfounding” help
for detection of

valid differential gene expression ???

yes  (it seems)



43

approaching screening for
 biosignatures
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approaching screening for 
biosignatures

● problem:

– sample variability is already used for 
estimating the non-negative factorization
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approaching screening for 
biosignatures

● problem:

– sample variability is already used for 
estimating the non-negative factorization

● possible solutions:

11 predicting cell-type proportions for a new 
sample, measuring distance to estimated 
profiles with the same cell-type 
proportions

Repsilber et al., BMC Bioinformatics 2010
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approaching screening for 
biosignatures

● problem:

– sample variability is already used for 
estimating the non-negative factorization

● possible solutions:

11 predicting cell-type proportions for a new 
sample, measuring distance to estimated 
profiles with the same cell-type 
proportions

22 estimating sample variability by 
substracting mean values cell-type-wise – 
followed by statistical learning
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solution 2
STEP 1
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solution 2
STEP 2
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solution 2
Results

simulated tissue mix deconfounded
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solution 2
Results

delta = 2 delta = 0.4

tissue mix tissue mix deconfoundeddeconfounded
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worst case
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worst case

→ next time 
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biomarker/biosignature – problems

● part I: heterogeneous  tissues
(= mixtures of cell types)

● part II: pooled  sample  designs
(= mixtures of individual samples)
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pooling design

investigated pool sizes:  1(non-pooled), 2, 3, 5
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advice: do not pool

The design of a classification 
study, like for biomarker search, 
should not consist of pooled 
samples, because data is required 
at the ”individual level”.

Kerr 2003
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objectives

● find differences in screening methods
regarding

– prediction error minimization

– finding the true underlying features
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data I: simulated
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data II: experimental

● cancer gene expression studies

– Leukemia (Golub et al., 1999)
– Prostate 1 (Singh et al., 2002)
– Prostate 2 (Lapointe et al., 2004)
– Breast Cancer (van't Veer et al., 2002)
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methods

● svm (linear, radial)

● Random Forest

● t-test-filter + LDA

● (P)PLS-DA + LDA
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simulation results – prediction error

scenario 1: differentially expressed genes

1% 10%
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experimental results – prediction error
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simulation results – feature recovery
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take home
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take home:
● avoid heterogeneous tissues and 

avoid sample pooling !
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take home:
● avoid heterogeneous tissues and 

avoid sample pooling !

● if not avoidable:

– look for huge effects
– try source decomposition methods
– try methods robust for pooling effects
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take home:
● avoid heterogeneous tissues and 

avoid sample pooling !

● if not avoidable:

– look for huge effects
– try source decomposition methods
– try methods robust for pooling effects

● validate honestly!
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● taking questions!
● repsilber@fbn-dummerstorf.de


