Bayesian Network Modelling and Clinican Decision Making in Liver Disease

Peter Lucas

peterl@cs.ru.nl

Department of Model-based System Development Institute for Computing and Information Sciences Radboud University Nijmegen, the Netherlands

Background

Probabilistic graphical models, such as Bayesian networks, can be used for:

- systems modelling and simulation
- knowledge discovery (learning)
- least commitment principle

Integration:

- molecular, (sub)cellular biology
- patient, environment levels

Uncertainty:

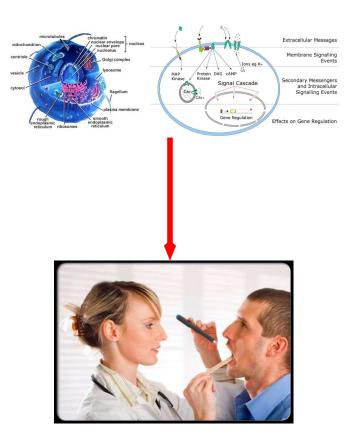
individual variation



Challenges

Translational medicine:

- To link basic scientific discoveries to clinical research
- To translate results from clinical research to clinical practice
- Clinical practice:
 - Diagnosis
 - Treatment, prognosis
 - Follow-up/monitoring



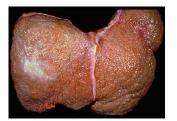
Diagnosis of liver disease

Clinical point of view:

- The disorder is primarily affecting the hepatocytes (hepatocellular disorder) or the biliary tract (biliary obstructive disorder)
- (2) disorder is acute or chronic in nature
- (3) disorder has benign or malignant features

Based in this: plan for further diagnostic assessment

acute (hepatitis)



chronic (cirrhosis)

malignant

Pocket diagnostic chart

	No	Ac	Be		No	Ac	Be	
	vs.	vs.	vs.		vs.	vs.	vs.	
	Ob	\mathbf{Ch}	$\mathbf{M}\mathbf{a}$		Ob	\mathbf{Ch}	$\mathbf{M}\mathbf{a}$	
Age: 31 – 64 years	+7	+5		Physical				İ 🦲
≥ 65 years	+12	+5		examination:				
Previous history:	-			Spiders	-6	+11		
Jaundice due to	-7	+8		Ascites	-3	+6		
cirrhosis				Liver surface nodular	-	+5		
Cancer in GI-tract,				Gall bladder:				
pancreas, bile	+10		+7	Courvoisier	+16		+11	
system, or breast	1 - 0		1.	firm or tender	+5		,	
				Clinical chemistry:	10			
Leukaemia or	-13			$bilirubin \ge 200 \mu mol/l$	+5	-5	+5	
malignant				5	10	Ŭ	10	
lymphoma								
Previous biliary				Alkaline phosphatase:				
colics or proven				400 – 1000 U/l	+6			
gallstones	+3	+7	-7	> 1000 U/l	+11		+6	
In treatment for	10			> 1000 0/1	, 11		10	
congestive heart								
failure		-5						
Present history:		Ŭ		ASAT:				
Trebent millery.				40 – 319 U/l		+5		
> 2 weeks			+7	$\geq 320 \text{ U/l}$	-10	+1	+6	
Upper abdominal pain:			Τ1	Clotting factors:	-10	- T I	+0	
sever	+9		-6	≤ 0.55		+8	+5	
slight or moderate	$^{+9}_{+4}$		-0	$\frac{2}{0.56} = 0.70$		+5 +5	+5 +5	
Fever:				$LDH \ge 1300 \text{ U/l}$		$^{+5}$	+7	
without chills		-3	-5	$1011 \ge 1300 \ 0/1$		-0	- T I	
with chills		-6^{-3}	-10					
Intermittent jaundice	+5	Ŭ	-5^{10}					
Weight loss ($\geq 2 \text{ kg}$)	10		$^{-3}_{+4}$					
Alcohol: $(\geq 2 \text{ kg})$			1.3					
1 – 4 drinks per day	-4			SUM left				
$\geq 5 \text{ drinks per day}$	-4^{-4}	+4		CONSTANTS	-19	-21	-8	
SUM left		1-3		TOTAL SCORE	10			1
50m 10m				101111 DOOLD				1

P. Matzen, et al. Liver 4 (1984) 360–71

Accuracy: 75–77% of patients with jaundice

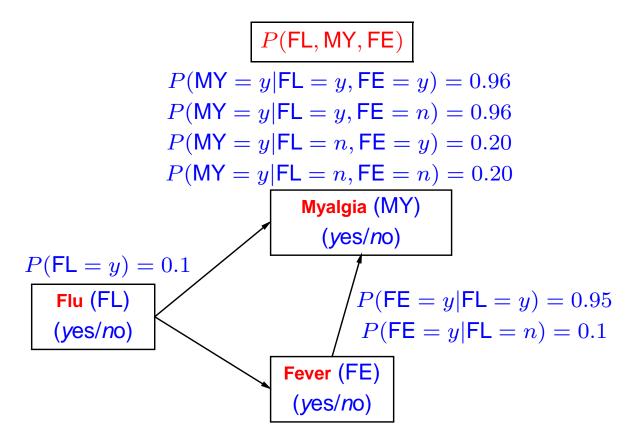
Logistic regression: $S_c = \sum_{k=0}^{n_c} \omega_k^c e_k^c, c =$ non-obstructive, acute, benign, with $P(c \mid \mathcal{E}) =$ $[1 + \exp{-S_c}]^{-1}$

Requirements modelling language

Language for disease modelling should include:

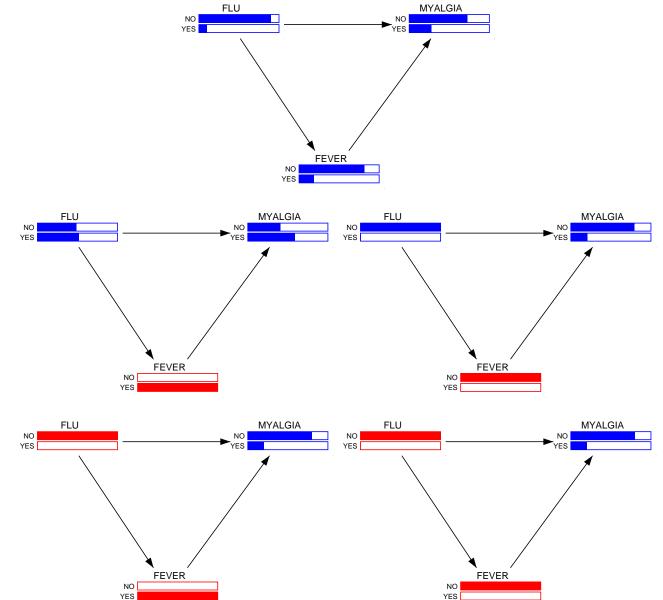
- Variables X, Y
- Interactions among variables $(X_1, \ldots, X_n) \rightarrow Y$
- Possibility to attach meaning to interactions in terms of causality
- Allow coping with uncertainty
- \Rightarrow Probabilistic graphical models
 - Represent joint probabilility distribution $P(X_1, \ldots, X_n, Y)$
 - Graphical representation: Markov models, Bayesian networks, chain graphs, ...

Bayesian network



$$\begin{split} P(\mathsf{FL},\mathsf{MY},\mathsf{FE}) &= P(\mathsf{MY} \mid \mathsf{FL},\mathsf{FE})P(\mathsf{FE} \mid \mathsf{FL})P(\mathsf{FL}) \\ &= P(\mathsf{MY} \mid \mathsf{pa}(\mathsf{MY}))P(\mathsf{FE} \mid \mathsf{pa}(\mathsf{FE}))P(\mathsf{FL} \mid \mathsf{pa}(\mathsf{FL})) \\ \textbf{Example:} \ P(\neg\textit{\textit{fl}},\textit{\textit{my}},\textit{\textit{fe}}) &= 0.20 \cdot 0.1 \cdot 0.9 = 0.018 \end{split}$$

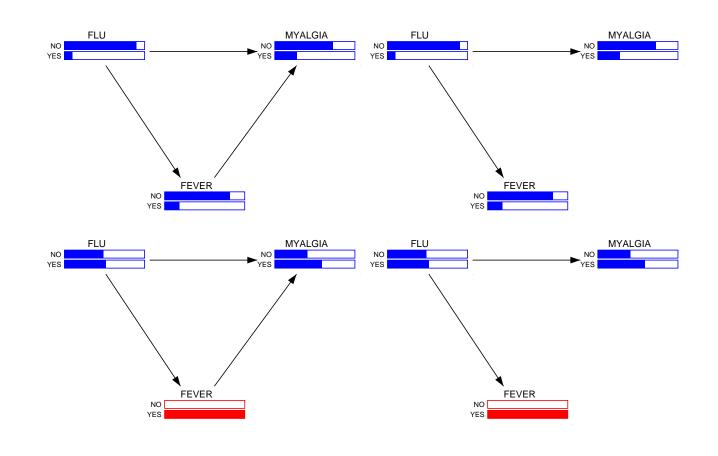
Independence and reasoning



Independence and reasoning

Arc from FEVER to MYALGIA can be removed, hence

 $P(\mathsf{MY} \mid \mathsf{FL}) \ (= P(\mathsf{MY} \mid \mathsf{FL}, \mathsf{FE}))$

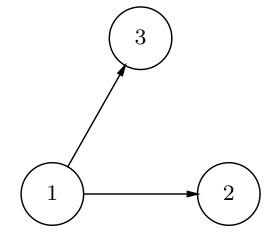


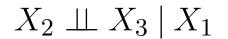
Independence relation

Let P be a probability distribution of X then U is called conditionally independent of Y given Z, denoted as

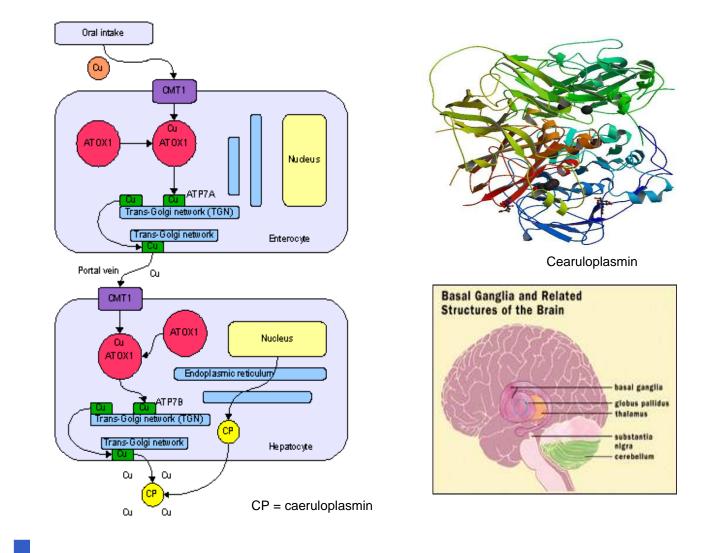
 $U \perp Y \mid Z$, iff $P(U \mid Y, Z) = P(U \mid Z)$

Note: This relation is completely defined in terms of the probability distribution *P*, but there is a relationship to graphs, for example:

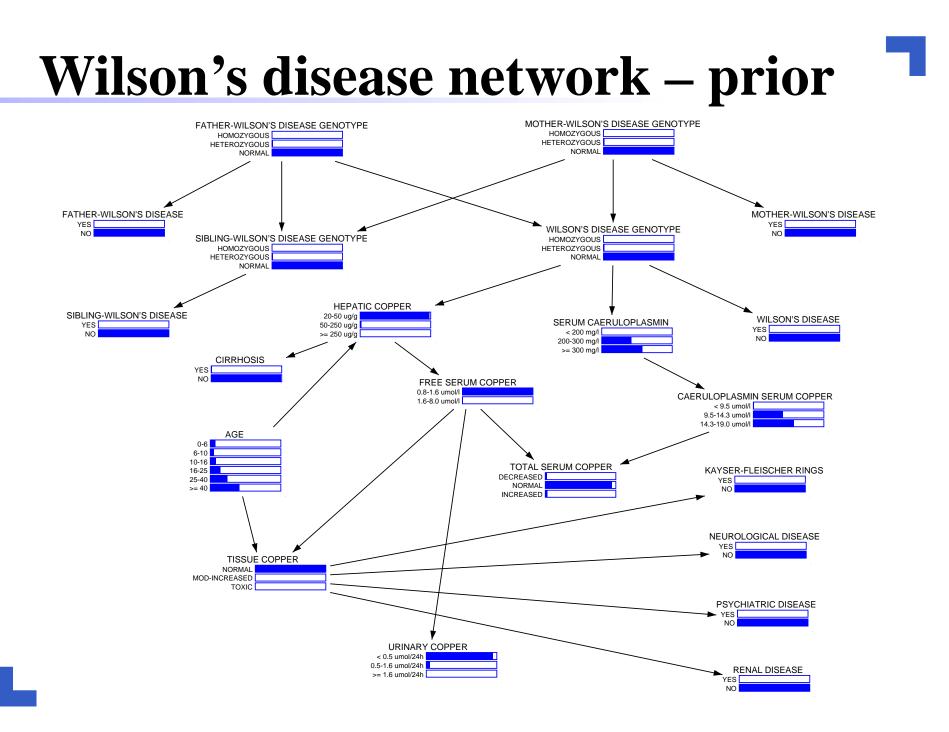




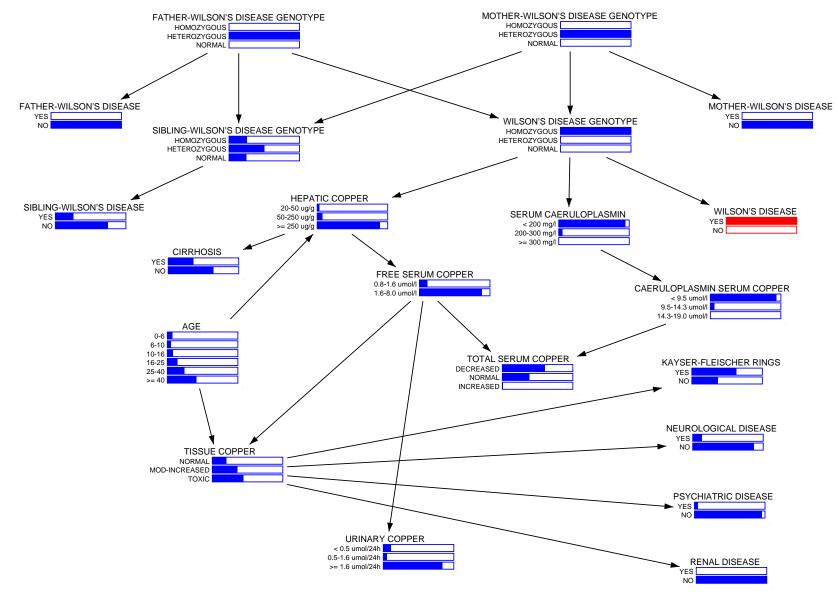
Wilson's disease



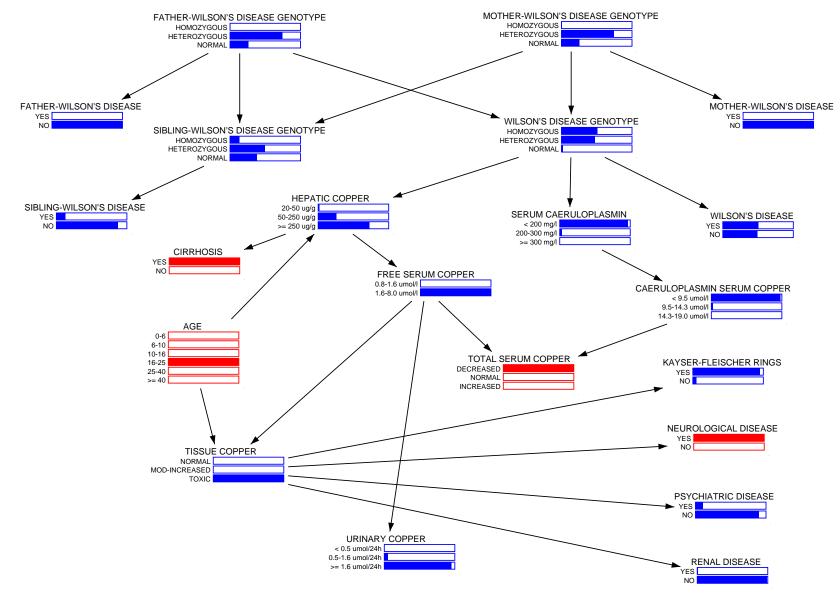
Kayser-Fleischer rings



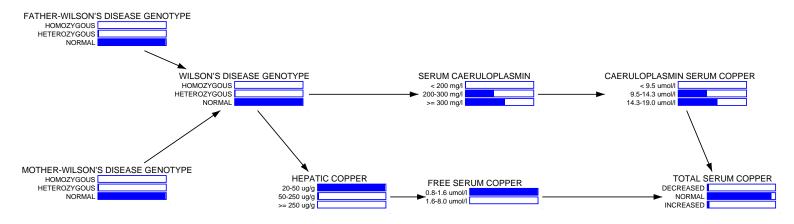
Network prediction



Network posterior



Reading off the independences

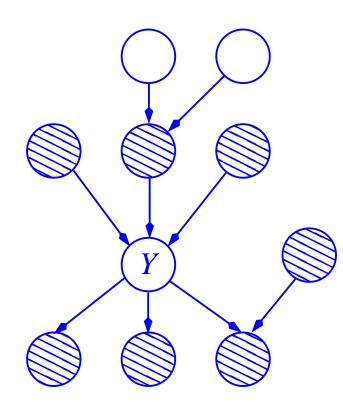


Examples:

- FWDG $\perp\!\!\!\perp$ MWDG | \varnothing
- FWDG / MWDG | WDG
- ▲ also: FWDG ⊥ MWDG | HC
- WDG $\perp \perp$ TSC | {SC, FSC}

(FWDG = Father Wilson's Disease Genotype, etc.)

Markov blanket

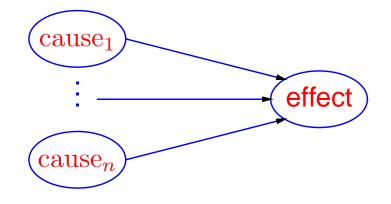


MB = Markov blanket: marked nodes

 $Y \perp\!\!\!\perp X \backslash (\{Y\} \cup \mathsf{MB}(Y)) \mid \mathsf{MB}(Y)$

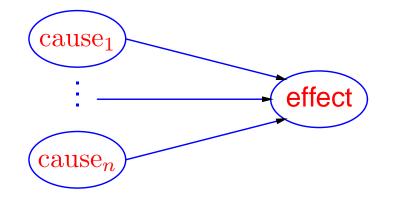
- The Markov blanket shields Y from all other factors, i.e. Markov blanket includes all factors that directly affect Y
- Has biological meaning

Causal graph: topology



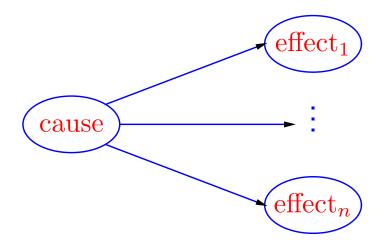
- Identify factors that are relevant
- Determine how those factors are causally related to each other
- The arrow 'cause → effect' does mean that 'cause' is a factor involved in causing 'effect'

Common effects



- An effect that has two or more ingoing arcs from other vertices is a common effect of those causes
- Kinds of causal interaction:
 - Positive synergy: Polution → Cancer ← Smoking
 - Negative synergy: Vaccine \longrightarrow Death \longleftarrow Smallpox

Common causes



- A cause that has two or more outgoing arcs to other vertices is a common cause (factor) of those effects
- The effects of a common cause are usually observables (e.g. signs and symptoms in a disease)

Specification of Interactions

Compact specification: probability tables

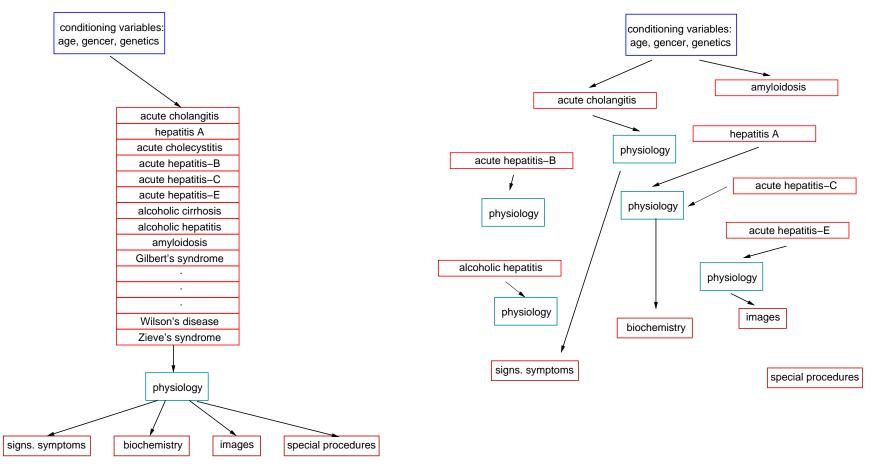
 $P(X_i \mid \mathsf{parents}(X_i))$

can still be large even when taking into account independence information

- Easy way to map domain knowledge to entries into a probability table
- Way to use qualitative knowledge about interactions as constraints to probabilistic information
- Various techniques available to reduce size of specification

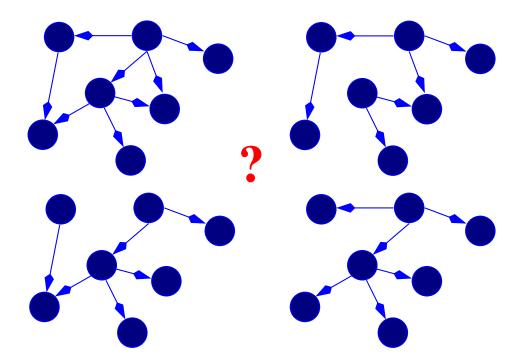
Diagnostic models (of liver disease)

Diagnosis: $d^* = \max_d P(d \mid \text{Evidence})$ (for any disease)



P(acute hepatitis-B, Wilson's disease) = 0 P(acute hepatitis-B, Wilson's disease) > 0

Learning Bayesian networks



- Bayesian networks \Leftrightarrow datasets?
- Learning:
 - parameter (distribution given structure) learning
 - structure (topology) learning

Comparing models

Let *D* be data, *G* be the structure and θ_G be the parameters of a BN; common methods:

- Likelihood: $L_{\theta_G}(G) = \Pr(D \mid G, \theta_G)$, for given *G* and θ_G . Estimating parameters by maximum log-likelihood: $l(G) = \max_{\theta_G} \log \Pr(D \mid G, \theta_G)$
- Marginal likelihood:

$$M(G) = \Pr(D \mid G) = \int_{\theta_G} \Pr(D \mid G, \theta_G) \Pr(\theta_G) d\theta_G$$

with prior $Pr(\theta_G)$ and parameters θ_G marginalised out (Pr is a density on data, structure, and parameters)

Conclusions

- PGMs: powerful for modelling for biomedicine:
 - white-box representation of interactions
 - can be learnt from data (structure and parameters)
 - handling of uncertainty in relationship
- Graph-based independence reasoning supplements probabilistic reasoning
- Very intuitive, software available (e.g. in R), and anyone can use PGMs after some training