Bayesian Network Modelling andClinican Decision Makingin Liver Disease

Peter Lucas

peterl@cs.ru.nl

Department of Model-based System Development Institute for Computing and Information SciencesRadboud University Nijmegen, the Netherlands

Background

Probabilistic graphical models, such as Bayesiannetworks, can be used for:

- systems modelling and simulation
- knowledge discovery (learning)
- **e** least commitment principle

Integration:

- molecular, (sub)cellular biology
- **e** patient, environment levels

Uncertainty:

Q individual variation

Challenges

Translational medicine:

- To link basic scientific discoveries to clinical research
- \bullet To translate results from clinical research to clinical practice
- Clinical practice:
	- **Q** Diagnosis
	- Treatment, prognosis
	- **Eollow-up/monitoring**

Diagnosis of liver disease

Clinical point of view:

- (1) The disorder is primarily affecting the hepatocytes (hepatocellular disorder) orthe biliary tract (biliary obstructivedisorder)
- (2) disorder is acute or chronic in nature
- (3) disorder has benign or malignant features

Based in this: plan for further diagnosticassessment

acute (hepatitis)

chronic (cirrhosis)

malignant

Pocket diagnostic chart

 P. Matzen, et al. Liver 4(1984) 360–71

2 Accuracy: 75–77% of patients with <mark>jaundice</mark>

2 Logistic regression: $S_c=\sum_k^n$ non-obstructive, acute, $\omega^c_k e^c_k$, $c=$ benign, with $P(c \mid \mathcal{E}) =$ $[1 + \exp -S_c]^{-1}$

As Bayesian network: $P(C,E_1,\ldots,E_n)=$ $P(C|E_1,\ldots,E_n)$ $\times P(E_1,\ldots,E_n)$. . .CE1 \mathbf{P} \mathbf{E} 2 ... En

Requirements modelling language

Language for disease modelling should include:

- Variables X, Y
- Interactions among variables $(X_1,\ldots,X_n)\to Y$
- Possibility to attach meaning to interactions in terms of causality
- Allow coping with uncertainty
- ⇒ Probabilistic graphical models
	- Represent joint probabilility distribution $P(X_1,\ldots,X_n,Y)$
	- **Q.** Graphical representation: Markov models, Bayesian networks, chain graphs, . . .

Bayesian network

 $P(\mathsf{FL}, \mathsf{MY}, \mathsf{FE}) = P(\mathsf{MY} \mid \mathsf{FL}, \mathsf{FE}) P(\mathsf{FE} \mid \mathsf{FL}) P(\mathsf{FL})$ $D(NN/\log(NN))D(\Gamma\Gamma\log(\Gamma\Gamma))$ $= P(\mathsf{MY} \mid \mathsf{pa}(\mathsf{MY}))P(\mathsf{FE} \mid \mathsf{pa}(\mathsf{FE}))P(\mathsf{FL} \mid \mathsf{pa}(\mathsf{FL}))$ Example: $P(\text{-}$ \neg fl, my, fe $) = 0.20 \cdot 0.1 \cdot 0.9 = 0.018$

Independence and reasoning

Independence and reasoning

Arc from FEVER to MYALGIA can be removed, hence

 $P(\textsf{MY} \mid \textsf{FL}) \ (= P(\textsf{MY} \mid \textsf{FL}, \textsf{FE}))$

Independence relation

Let P be a probability distribution of X then U is called
conditionally independent of V given Z denoted as conditionally independent of Y given Z , denoted as

 $U \perp \!\!\! \perp Y \mid Z$, iff $P(U \mid Y, Z) = P(U \mid Z)$

Note: This relation is completely defined in terms of theprobability distribution P , but there is a relationship to graphs, for example:

 $X_2 \perp\!\!\!\perp X_3$ $_3 | X$ 1

Wilson's disease

Kayser−Fleischer rings

Network prediction

Network posterior

Reading off the independences

Examples:

- $\mathsf{FWDG} \perp\!\!\!\perp \mathsf{MWDG} \mid \varnothing$
- FWDG 6⊥⊥ MWDG [|] WDG
- also: FWDG $\not\perp\,$ MWDG | HC
- $\textsf{WDG}\ \!\perp\!\!\!\perp\ \textsf{TSC} \mid \{\textsf{SC}, \textsf{FSC}\}$

(FWDG ⁼ Father Wilson's Disease Genotype, etc.)

Markov blanket

MB ⁼ Markov blanket: marked nodes

 $Y \perp\!\!\!\perp X \backslash (\{Y\} \cup \mathsf{MB}(Y)) \mid \mathsf{MB}(Y)$

- **The Markov blanket** shields Y from all other factors, i.e. Markov blanket includes all factorsthat directly affect Y
- **Las biological meaning**

Causal graph: topology

- **Q.** Identify factors that are relevant
- **Q.** Determine how those factors are causally related to each other
- The arrow ' $\mathsf{cause} \to$ ^a factor involved in causing 'effect' → **effect**' does mean that 'cause' is
∩ causing 'effect'

Common effects

- An effect that has two or more ingoing arcs from other vertices is a <mark>common effect</mark> of those causes
- Kinds of causal interaction:
	- Positive synergy: Polution → Cancer ← Smoking
Negotive synergy: Vessiss
	- Negative synergy: Vaccine → Death ← Smallpox

Common causes

- A cause that has two or more outgoing arcs to othervertices is ^a common cause (factor) of those effects
- The effects of a common cause are usually observables (e.g. signs and symptoms in ^a disease)

Specification of Interactions

Compact specification: probability tables

 $P(X_i \mid \mathsf{parents}(X_i))$

can still be large even when taking into account independence information

- Easy way to map domain knowledge to entries into a probability table
- Way to use qualitative knowledge about interactionsas constraints to probabilistic information
- Various techniques available to reduce size of specification

Diagnostic models (of liver disease)

Diagnosis: $d^* = \max_d P(d \mid \textit{Evidence})$ (for any disease)

 $P(\mathsf{acute}\,\,$ hepatitis-B, Wilson's disease $) = 0-P(\mathsf{acute}\,\,$ hepatitis-B, Wilson's disease $) >0$

Learning Bayesian networks

- Bayesian networks ⇔ datasets?
.
- **Learning:**
	- parameter (distribution given structure) learning
	- structure (topology) learning

Comparing models

Let D be data, G be the structure and θ_G parameters of ^a BN; common methods: $_{G}$ be the
.

- Likelihood: $L_{\theta_G}(G) = \Pr(D \mid G, \theta_G)$ $\overline{\mathbf{r}}$ \mathcal{G}), for given G and θ_G . Estimating parameters by maximum log-likelihood: $l(G) = \max_{\theta_G}$ $_{G}$ log Pr(D | G, θ_C $G\big)$
- Marginal likelihood:

$$
M(G) = \Pr(D \mid G) = \int_{\theta_G} \Pr(D \mid G, \theta_G) \Pr(\theta_G) d\theta_G
$$

with prior $\Pr(\theta_G)$ and parameters θ_G \overline{G} marginalised out $(\Pr$ is a density on data, structure, and parameters)

Conclusions

- PGMs: powerful for modelling for biomedicine:
	- white-box representation of interactions
	- can be learnt from data (structure and parameters)
	- handling of uncertainty in relationship
- Graph-based independence reasoning supplementsprobabilistic reasoning
- Very intuitive, software available (e.g. in R), and anyone can use PGMs after some training