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Background
Probabilistic graphical models, such as Bayesian
networks, can be used for:

systems modelling and simulation

knowledge discovery (learning)

least commitment principle

Integration:

molecular, (sub)cellular biology

patient, environment levels

Uncertainty:

individual variation
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Challenges

Translational medicine:

To link basic scientific
discoveries to clinical
research

To translate results from
clinical research to clinical
practice

Clinical practice:
Diagnosis
Treatment, prognosis
Follow-up/monitoring
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Diagnosis of liver disease

Clinical point of view:

(1) The disorder is primarily affecting the
hepatocytes (hepatocellular disorder) or
the biliary tract (biliary obstructive
disorder)

(2) disorder is acute or chronic in nature

(3) disorder has benign or malignant fea-
tures

Based in this: plan for further diagnostic
assessment

acute (hepatitis)

chronic (cirrhosis)

malignant

Bayesian Network Modelling and Clinican Decision Making in Liver Disease – p.3



Pocket diagnostic chart
P. Matzen, et al. Liver 4
(1984) 360–71

Accuracy: 75–77% of
patients with jaundice

Logistic regression:
Sc =

P

nc

k
ωc

k
ec

k
, c =

non-obstructive, acute,
benign, with P (c | E) =

[1 + exp−Sc]−1

As Bayesian network:
P (C, E1, . . . , En) =

P (C|E1, . . . , En)

×P (E1, . . . , En)
. . .

C

EnE2E1
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Requirements modelling language
Language for disease modelling should include:

Variables X,Y

Interactions among variables (X1, . . . , Xn)→ Y

Possibility to attach meaning to interactions in terms
of causality

Allow coping with uncertainty

⇒ Probabilistic graphical models

Represent joint probabilility distribution
P (X1, . . . , Xn, Y )

Graphical representation: Markov models, Bayesian
networks, chain graphs, . . .
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Bayesian network

Flu (FL)
(yes/no)

Fever (FE)
(yes/no)

Myalgia (MY)
(yes/no)

P (FL, MY, FE)

P (FL = y) = 0.1

P (FE = y|FL = y) = 0.95

P (FE = y|FL = n) = 0.1

P (MY = y|FL = y, FE = y) = 0.96

P (MY = y|FL = y, FE = n) = 0.96

P (MY = y|FL = n, FE = y) = 0.20

P (MY = y|FL = n, FE = n) = 0.20

P (FL, MY, FE) = P (MY | FL, FE)P (FE | FL)P (FL)
= P (MY | pa(MY))P (FE | pa(FE))P (FL | pa(FL))

Example: P (¬fl, my, fe) = 0.20 · 0.1 · 0.9 = 0.018
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Independence and reasoning
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Independence and reasoning
Arc from FEVER to MYALGIA can be removed, hence

P (MY | FL) (= P (MY | FL, FE))
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Independence relation
Let P be a probability distribution of X then U is called
conditionally independent of Y given Z, denoted as

U ⊥⊥ Y | Z, iff P (U | Y, Z) = P (U | Z)

Note: This relation is completely defined in terms of the
probability distribution P , but there is a relationship to
graphs, for example:

X2 ⊥⊥ X3 |X1

1 2

3
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Wilson’s disease

CP = caeruloplasmin

Kayser−Fleischer rings

Cearuloplasmin
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Wilson’s disease network – prior
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Network prediction
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Network posterior
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Reading off the independences

20-50 ug/g
50-250 ug/g
>= 250 ug/g

HEPATIC COPPER

HOMOZYGOUS
HETEROZYGOUS

NORMAL

WILSON’S DISEASE GENOTYPE

HOMOZYGOUS
HETEROZYGOUS

NORMAL

MOTHER-WILSON’S DISEASE GENOTYPE

HOMOZYGOUS
HETEROZYGOUS

NORMAL

FATHER-WILSON’S DISEASE GENOTYPE

< 200 mg/l
200-300 mg/l
>= 300 mg/l

SERUM CAERULOPLASMIN
< 9.5 umol/l

9.5-14.3 umol/l
14.3-19.0 umol/l

CAERULOPLASMIN SERUM COPPER

DECREASED
NORMAL

INCREASED

TOTAL SERUM COPPER

0.8-1.6 umol/l
1.6-8.0 umol/l

FREE SERUM COPPER

Examples:

FWDG ⊥⊥ MWDG | ∅

FWDG 6⊥⊥ MWDG |WDG

also: FWDG 6⊥⊥ MWDG | HC

WDG ⊥⊥ TSC | {SC, FSC}

(FWDG = Father Wilson’s Disease Genotype, etc.)
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Markov blanket

Y

MB = Markov blanket: marked
nodes

Y ⊥⊥ X\({Y }∪MB(Y )) | MB(Y )

The Markov blanket
shields Y from all other
factors, i.e. Markov
blanket includes all factors
that directly affect Y

Has biological meaning
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Causal graph: topology

cause1

causen

... effect

Identify factors that are relevant

Determine how those factors are causally related to
each other

The arrow ‘cause→ effect’ does mean that ‘cause’ is
a factor involved in causing ‘effect’
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Common effects

cause1

causen

... effect

An effect that has two or more ingoing arcs from
other vertices is a common effect of those causes

Kinds of causal interaction:
Positive synergy: Polution −→ Cancer←− Smoking

Negative synergy: Vaccine −→ Death←− Smallpox

Bayesian Network Modelling and Clinican Decision Making in Liver Disease – p.17



Common causes

cause

effect1

effectn

...

A cause that has two or more outgoing arcs to other
vertices is a common cause (factor) of those effects

The effects of a common cause are usually
observables (e.g. signs and symptoms in a disease)
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Specification of Interactions

Compact specification: probability tables

P (Xi | parents(Xi))

can still be large even when taking into account
independence information

Easy way to map domain knowledge to entries into a
probability table

Way to use qualitative knowledge about interactions
as constraints to probabilistic information

Various techniques available to reduce size of
specification
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Diagnostic models (of liver disease)
Diagnosis: d∗ = maxd P (d | Evidence) (for any disease)

acute cholangitis

hepatitis A

acute hepatitis−B

acute hepatitis−E

Wilson’s disease

Zieve’s syndrome

acute cholecystitis

acute hepatitis−C

alcoholic cirrhosis

alcoholic hepatitis

amyloidosis

Gilbert’s syndrome
.

.

.

physiology

signs. symptoms biochemistry images special procedures

conditioning variables:
age, gencer, genetics age, gencer, genetics

signs. symptoms

biochemistry

special procedures

images

physiology

physiology

alcoholic hepatitis

physiology

acute hepatitis−B
physiology

acute cholangitis
amyloidosis

hepatitis A

acute hepatitis−C

acute hepatitis−E

physiology

conditioning variables:

P (acute hepatitis-B, Wilson’s disease) = 0 P (acute hepatitis-B, Wilson’s disease) > 0
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Learning Bayesian networks

?

Bayesian networks⇔ datasets?

Learning:
parameter (distribution given structure) learning
structure (topology) learning
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Comparing models

Let D be data, G be the structure and θG be the
parameters of a BN; common methods:

Likelihood: LθG
(G) = Pr(D | G, θG), for given G and

θG. Estimating parameters by maximum
log-likelihood: l(G) = maxθG

log Pr(D | G, θG)

Marginal likelihood:

M(G) = Pr(D | G) =

∫
θG

Pr(D | G, θG) Pr(θG) dθG

with prior Pr(θG) and parameters θG marginalised out

(Pr is a density on data, structure, and parameters)
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Conclusions

PGMs: powerful for modelling for biomedicine:
white-box representation of interactions
can be learnt from data (structure and
parameters)
handling of uncertainty in relationship

Graph-based independence reasoning supplements
probabilistic reasoning

Very intuitive, software available (e.g. in R), and
anyone can use PGMs after some training
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