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Abstract
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with the insights gained, it is demonstrated how Population MCMC and thermodynamic in-
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1 Introduction

Marginal likelihood estimation over a statistical model can be an extremely chal-
lenging task. A statistical model of a complex process can be considered a codi-
fication of an underlying hypothesis regarding the system under study. Such com-
peting hypotheses can be objectively assessed using Bayes factors obtained from
the marginal likelihoods based on each statistical model. Except in a small number
of special cases where there is a conjugate prior available, the marginal likelihood
does not generally admit a closed-form expression, and estimating this is seriously
hampered by a number of practical difficulties. In particular, the complexity of
some statistical models may induce likelihood surfaces that are highly correlated
and multimodal, a good example of which are models over nonlinear differential
equations (see Section 4). Such probability distributions are very difficult to sample
from and indeed standard Markov Chain Monte Carlo (MCMC) methods very often
fail catastrophically. This aspect makes obtaining unbiased low-variance estimates
of marginal likelihoods, and hence Bayes factors, for such models a formidable
challenge. However, even for simple linear regression models, which exhibit log-
concave likelihood surfaces, we find that commonly used methods for estimating
the marginal likelihoods still may produce substantially biased finite sample es-
timates. In this paper we address these problems and present a number of novel
and useful contributions which are of importance to the development of Bayesian
statistical methodology and application.

We provide a study of the statistical failure of the Posterior Harmonic Mean esti-
mator for calculating Bayes factors (Section 3). This is quite different to the nu-
merical problems regarding instability which are often cited in the statistics liter-
ature (Newton and Raftery, 1994; Raftery et al., 2007) and something which has
not been highlighted in the literature previously. We investigate the use of thermo-
dynamic integration methods for estimating marginal likelihoods (Sections 2 and
3). In particular, we provide a decomposition of the Thermodynamic Integral in
terms of upper and lower bounds and characterise the error associated with the dis-
crete form of the estimator in terms of the Kullback-Leibler divergence by using
analytically tractable linear models to gain insight. We provide an analytic charac-
terisation of the optimal discretisation strategy, in terms of minimising the variance
of the estimates produced, using thermodynamic integration over linear models,
and undertake an experimental study highlighting significant differences with re-
cently published results (Section 3). Finally, we apply our insights to illustrate how
Population Markov Chain Monte Carlo (MCMC) may be elegantly combined with
thermodynamic integration to gain estimates of marginal likelihoods that are accu-
rate enough to discriminate between competing model hypotheses described using
nonlinear ODEs (Section 4). The benefits of Population MCMC in this setting are
twofold. Firstly, it allows us to obtain samples from all the required thermodynamic
distributions simultaneously, and secondly, the population structure enables sam-
pling from the multimodal probability distributions that are induced by nonlinear
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ODEs.

2 Estimating Marginal Likelihoods

The ability to calculate marginal likelihoods accurately is of vital importance for
computing meaningful Bayes factors for model comparison (Robert and Casella,
2004). Bayes factors can be used to compute the posterior probabilities of two
models, given the prior probability of each model. Given a set of data y ∈ Rm and
two competing model hypotheses H1 and H2, we wish to calculate the probability
of each model hypothesis given the data. The posterior odds are given by

p(H1 | y)
p(H2 | y)︸ ︷︷ ︸

Posterior Odds

=
p(y | H1)
p(y | H2)︸ ︷︷ ︸

Bayes Factor

p(H1)
p(H2)︸ ︷︷ ︸

Prior Odds.

(1)

In the case that there is no preference a priori for a particular model, the prior
probabilities of the models may be set to be equal, which shall be the case for the
experiments presented in this paper. Thus for P(H1) = P(H2), the Bayes factor,
denoted B12, is equal to the ratio of the posterior probabilities of the two models.

Table 1 shows a standard interpretation of the Bayes factor B12 (Kass and Raftery,
1995), which compares the model H1 with the model H2. This is given in terms of
evidence in favour of the first labeled model over the second.
Table 1
Interpretation of Bayes Factor (Kass and Raftery, 1995)

B12 Evidence against H2

1 to 3 Not worth more than a bare mention

3 to 10 Substantial

10 to 100 Strong

> 100 Decisive

The likelihood of the data given a model, known as the integrated or marginal
likelihood, is obtained by integrating over the parameter space

p(y | H j)=
∫

p(y | θ j,H j)π(θ j | H j)dθ j

= Eπ(θ j)
[
p(y | θ j,H j)

]
, (2)

where θ j is a vector describing the parameters for model H j, π(θ j |H j) is the prior
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density of the parameters, and p(y | θ j,H j) is the likelihood function. The marginal
likelihood is usually intractable in all but the simplest of scenarios, in which case
one must resort to numerical methods (Robert and Casella, 2004).

We consider two methods based on importance sampling ideas, the Prior Arithmetic
Mean estimator (McCulloch and Rossi, 1991) and the Posterior Harmonic Mean
estimator (Newton and Raftery, 1994; Raftery et al., 2007). These approaches are
straightforward to implement and do not require a huge amount of computational
power, however we shall demonstrate that the biased results that both produce ren-
der them unsuitable for accurately comparing models.

Path sampling methods (Gelman and Meng, 1998) have been shown to perform
well at the task of estimating marginal likelihoods (Friel and Pettitt, 2008; Lar-
tillot and Philippe, 2006). Such methods rely on sampling from a sequence of dis-
tributions which form a “bridge” in the probability density space connecting the
prior distribution to the posterior distribution, and integrating over them. The third
method we examine is therefore based on approximating the thermodynamic in-
tegral (Friel and Pettitt, 2008; Lartillot and Philippe, 2006) which is probably the
most general example of path sampling methods. Other “non-equilibrium” methods
(Del Moral et al., 2006, 2007) are very similar in principle, for example Annealed
Importance Sampling (Neal, 2001), however we do not consider these methods fur-
ther since they are all based on the thermodynamic integral and appear to produce
similar results to the thermodynamic integral approximation that we do consider
(Vyshemirsky and Girolami, 2008). For a complete review of marginal likelihood
estimation methods see e.g. (Friel and Pettitt, 2008).

2.1 Monte Carlo Methods

For the purpose of computing Bayes factors we wish to evaluate, for a particular
model, the marginal likelihood (2). It is possible to obtain a Monte Carlo estimate of
the marginal likelihood using 1

S ∑
S
i=1 p(y | θ (i)) where θ

(1),θ (2), . . . ,θ (S) ∼ π(θ).
(Explicit conditioning on a model H is now dropped for reasons of clarity.) By
the Law of Large numbers, this estimator converges to the true expectation as the
number of independent samples, S, drawn from the prior, tends to infinity (Robert
and Casella, 2004).

This estimator, however, is often very inefficient for a finite number of samples
as many samples will fall outside regions of high likelihood, see e.g. (Gamerman,
2002). To get around the inefficiency of sampling from the prior a common ap-
proach is to employ importance sampling, as used by the Posterior Harmonic Mean
estimator (Newton and Raftery, 1994). The Monte Carlo estimate using an impor-
tance sampling scheme is given by

4



∑
S
i=1 wi p(y | θ (i))

∑
S
i=1 wi

, (3)

where wi = p(θ)/π∗(θ), and the density function π∗(θ) is the importance sam-
pling function. (Note that π∗(θ) is not strictly required to be a normalised density
function). Choosing the importance sampling function to be the posterior density,
and substituting this into (3) gives

{
1
S

S

∑
i=1

p(y | θ (i))−1

}−1

, (4)

which is the harmonic mean of the likelihood values, where the parameters are
sampled from the posterior, θ ∼ p(θ | y). It is known that sometimes the variance
of this estimator can become very large, since occasionally a sample may be taken
into account with small likelihood, which has a large effect on the result due to the
reciprocal present in (4). Raftery et al. (2007) have also more recently observed
that this estimator can produce biased results for finite sample sizes, despite being
asymptotically unbiased, due to numerical instabilities resulting in high variance
estimates. We shall see, perhaps more worryingly, in Section 3 that even when
harmonic mean estimates are numerically stable and exhibit low variance, they may
still be strongly biased, leading to wrong interpretations of the observed evidence
through the calculation of Bayes factors.

2.2 Thermodynamic Integration

It is widely accepted that estimating the marginal likelihood of a non-trivial sta-
tistical model is generally very challenging and methods employing some form of
thermodynamic integration or path sampling (Gelman and Meng, 1998), although
computationally more expensive than the importance sampling methods previously
described, have been shown to perform well on a number of forms of statistical
model, see for example (Friel and Pettitt, 2008), or (Lartillot and Philippe, 2006)
for use in a phylogenetic context.

Such methods are based on the fact that the logarithm of the marginal likelihood
can be represented in terms of the following integral

log p(y) =
∫ 1

0
Eθ |y,t [log p(y | θ)]dt. (5)

The classical derivation of the thermodynamic integral is as follows. Given an un-
normalised density, q(θ), the normalised probability density is given by p(θ) =
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1
Z q(θ), where Z =

∫
θ

q(θ)dθ . In order to calculate the marginal likelihood using
thermodynamic integration, however, we define the power-posterior as in (Friel
and Pettitt, 2008) and (Lartillot and Philippe, 2006)

pt(θ |y) =
p(y | θ)t p(θ)

z(y | t)
, where z(y | t) =

∫
θ

p(y | θ)t p(θ)dθ . (6)

We note at this point that z(y | t = 0) is the prior marginalised over θ , which is
simply equal to 1, and that z(y | t = 1) is the marginal likelihood. By considering

d
dt

log(z(y | t)) =
1

z(y | t)
d
dt

z(y | t) = Eθ |y,t [log p(y | θ)] ,

where the expectation is taken with respect to the power-posteriors, (5) then follows
by integrating with respect to t.

Additionally, we can derive an expression for the optimal temperature schedule
in terms of minimising the Monte Carlo variance (Gelman and Meng, 1998). We
firstly define a density p(t) over the temperature values t ∈ [0,1]. Introducing p(t)
obtains

log p(y) =
∫ 1

0

Eθ |y,t [log p(y | θ)] p(t)
p(t)

dt = Eθ ,t|y

[
log p(y | θ)

p(t)

]
. (7)

The variance associated with the Monte Carlo estimate of log p(y) can be min-
imised by finding the function p(t) which minimises the following Lagrangian

∫ 1

0
Eθ |y,t

[
{log p(y | θ)}2

p(t)

]
dt +λ

∫ 1

0
p(t)dt, (8)

whose solution is

p(t) =
p∗(t)∫ 1

0 p∗(t ′)dt ′
(9)

and

p∗(t) =
√

Eθ |y,t

[
{log p(y | θ)}2

]
. (10)
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We shall return to this expression in Section 3 where we use it to guide our choice
of temperature spacing for use in experiments.

Published practical methods for estimating this thermodynamic integral involve
discretisation (Friel and Pettitt, 2008; Lartillot and Philippe, 2006). An estimate
of the marginal likelihood can be obtained by numerically integrating over a fi-
nite number of temperatures within the range t = 0 to t = 1 and using the cor-
responding expectations Eθ |y,t [log p(y|θ)] obtained at each discrete temperature.
By running a Markov chain at each temperature until equilibrium and using these
power-posterior samples, a Monte Carlo estimate of each required expectation can
be obtained. Indeed, in Section 4, we demonstrate how population MCMC may
be employed to efficiently obtain samples from all the required power-posteriors
simultaneously.

2.2.1 A Discretisation of the Thermodynamic Integral

Friel and Pettitt (2008) consider the possibility of obtaining the marginal likeli-
hood by estimating the expectation in (7). However, there are unfortunately as yet
no practical methods available for estimating this expectation, and we are forced
to introduce a discretisation. In order to obtain insight into the sources of error
introduced by the discretisation of (5), we consider some simple manipulation of
(6)

z(y | tn)
z(y | tn−1)

p(θ | y, tn) = p(y | θ)∆tn p(θ | y, tn−1), (11)

where 1 = tN > · · · > t1 = 0 and ∆tn ≡ tn− tn−1. Taking logarithms, multiplying
both sides of the equality by p(θ | y, tn), and integrating with respect to θ gives the
following expression

log
z(y | tn)

z(y | tn−1)
= Eθ |y,tn [log p(y | θ)]∆tn−KL(pn||pn−1), (12)

where Eθ |y,tn denotes the expectation with respect to the power-posterior p(θ | y, tn)
and

KL(pn||pn−1) =
∫

p(θ | y, tn) log
p(θ | y, tn)

p(θ | y, tn−1)
dθ ≥ 0.

By summing over n = 2 : N, the logarithm of the marginal likelihood may be ex-
pressed in a discrete form
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log p(y)=∑
n

log
z(y | tn)

z(y | tn−1)

=∑
n

[
Eθ |y,tn [log p(y | θ)]∆tn︸ ︷︷ ︸

U pper−bound

−KL(pn||pn−1)︸ ︷︷ ︸
Bias

]
. (13)

We note that calculating the sum of just the expectations across each temperature
interval, gives a strict upper bound on the estimate of the log of the marginal like-
lihood, with the bias from the true value being characterised by the sum of the
KL divergences between posteriors across each temperature interval. In the limit of
temperature differences the divergence term will tend to zero, so KL(pn||pn−1)→ 0
as ∆tn→ 0 and therefore

lim
∆tn→0

∑
n

Eθ |y,tn [log p(y | θ)]∆tn→
∫ 1

0
Eθ |y,t [log p(y | θ)]dt

recovers the continuous form of the thermodynamic integral in (5).

Similarly, a lower bound can be obtained by taking logarithms of (11) and multi-
plying both sides of the equality this time by p(θ | y, tn−1). Integrating with respect
to θ and summing over all n gives a lower bound on the logarithm of the marginal
likelihood

log p(y)=∑
n

log
z(y | tn)

z(y | tn−1)

=∑
n

[
Eθ |y,tn−1 [log p(y | θ)]∆tn︸ ︷︷ ︸

Lower−bound

+KL(pn−1||pn)︸ ︷︷ ︸
Bias

]
. (14)

We can average over these upper and lower bounds to form an expression for the
logarithm of the marginal likelihood as follows

log p(y) =
1
2 ∑

n
∆tn(En−1 +En)︸ ︷︷ ︸

Approximation

+
1
2 ∑

n

[
KL(pn−1||pn)−KL(pn||pn−1)

]
︸ ︷︷ ︸

Bias

, (15)

where En = Eθ |y,tn [log p(y | θ)], which is equivalent to using the trapezium rule for
numerical integration with the associated error expressed in terms of the asymmetry
of the KL divergence. We demonstrate in Section 3 that this approximation for
estimating marginal likelihoods over the linear models which we consider gives a
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lower bias than using either of the upper or lower bound approximations on their
own.

There are therefore two sources of error which appear when estimating the marginal
likelihood. Firstly, there is the Monte Carlo error when estimating the power-posterior
expectations themselves, which depends on the number of samples used and the
sampler accurately converging to the required stationary distribution. Secondly,
there is the error in approximating the integral of the power-posteriors over t, rep-
resented by the KL divergence term. As discussed in (Friel and Pettitt, 2008) the
discretisation of the unit line need not be uniform. Indeed, there are many ways
in which the tis may be chosen, and this can drastically affect the bias associated
with the estimate, as we shall show in Section 3. An expression for the optimal
temperature density function, p(t), is given in (10). For linear regression models,
considered in Section 3, the KL divergence conveniently has an analytic form, as
does the minimum variance p(t), and this therefore allows us to examine in detail
the effect that varying the number and spacing of the temperature partitions has on
this source of error.

3 Gaining Insight using Analytically Tractable Linear Models

In order to obtain deeper insights into the problem of estimating marginal like-
lihoods, we performed experiments using simple linear regression models. These
models were used to determine the relationship between some continuous response
variable y and a set of covariates x = (x1, . . . ,xd), where d is the dimension of the
model. General models of the form g(x) = ∑

k
i=1 βiBi(x) were used so that the func-

tion g comprised a linear combination of k basis functions Bi(x) with coefficients βi.
In particular the responses were assumed to be related to the variables through the
relationship y = g(x)+ ε , where ε has a Gaussian distribution with zero-mean and
known standard deviation σ . This can also be written in matrix form y = Bβ + ε ,
where y = (y1, . . . ,ym)T , ε = (ε1, . . . ,εm)T , and B is the design matrix.

For each pair of models, H1,H2, a dataset of m points, D = {yi,xi}m
i=1, was pro-

duced by one of the linear models by calculating g(xi) at some randomly selected
positions and adding some noise, ε . The two models were then compared by us-
ing this “observed”dataset to calculate P(y | X,H j), where X = [x1, . . . ,xm], from
which the Bayes factors could be obtained.

3.1 Analytic Expressions

A conjugate prior distribution on the regression coefficients was used so that an
analytic expression for the marginal likelihood could be obtained. This was vital
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so that a benchmark was available for assessing the accuracy of the approximate
methods. Independent Gaussian priors centred at zero with variance ζ 2 were placed
on each of the unknown parameters (β1, . . . ,βk), so that π(βi) = N(0,ζ 2).

The likelihood for a model with a fixed design matrix B may be written as p(y |
X,β ,σ). Since the errors are normally distributed so that ε ∼ N(0,σ2I), where I is
the identity matrix of dimension m, the likelihood function is given by

(2πσ
2)−m/2 exp

{
−(y−Bβ )T (y−Bβ )

2σ2

}
. (16)

Since both the priors and the likelihood function are Gaussian distributions and
σ2 and ζ 2 are fixed, the posterior is therefore also a Gaussian distribution for
which there exists an analytic form. This Gaussian posterior is given by p(β |
X,y,σ2,ζ 2) = N(µ,Σ), where

µ =
(

BT B+
σ2

ζ 2 I
)−1

BT y, Σ = σ
2
(

BT B+
σ2

ζ 2 I
)−1

.

From now on, for readability, we do not condition explicitly on the covariates X in
every equation.

Similarly there is an analytic form for the marginal likelihood, which is also a mul-
tivariate Gaussian distribution. The marginal likelihood of the experimental data
given a particular model is given by

p(y | σ2,ζ 2)=
∫

p(y | β ,σ2)π(β | ζ 2)dβ (17)

=(2π)−m/2 |Ω|−1/2 exp
{
−1

2
yT

Ω
−1y
}

,

where Ω = σ2I + ζ 2BBT . Therefore a Bayes factor can be obtained analytically
by using the above equation to calculate the marginal likelihood for two competing
linear regression models. This analytical Bayes factor can be used as a benchmark
against which other methods of estimating marginal likelihoods may be compared.

3.1.1 Power Posteriors

The linear regression models we use also admit an analytic expression for the power
posteriors required in the thermodynamic integration method. Noting that the pos-
terior distribution is Gaussian, then the power posteriors, for a particular inverse
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temperature t ∈ [0,1], are also simply Gaussian distributions p(β | y, t,σ2,ζ 2) =
Nβ (µ t ,Σt) where the mean and covariance matrices are given by

µ t =
(

BT B+
σ2

tζ 2 I
)−1

BT y, Σt =
σ2

t

(
BT B+

σ2

tζ 2 I
)−1

.

The expectation of the log of the likelihood with respect to a power posterior can
be obtained analytically as

Eβ |y,t,σ2,ζ 2
[
log p(y | β ,σ2)

]
=− 1

2σ2 eT e− 1
2

Tr(BT BΣt)−
m
2

log(2πσ
2), (18)

where e = y−Bµ t .

3.1.2 Discretised Thermodynamic Integral

For the discretised estimate of the thermodynamic integral (15) the bias represented
by the difference in KL divergences admits an analytic expression since the power
posteriors for the linear regression model are simply given by Gaussian distribu-
tions. The KL divergence for the temperature interval from tn−1 to tn is given by

KL(pn||pn−1)=
1
2

log
|Σtn−1 |
|Σtn|

+
1
2

Tr(Σ−1
tn−1

Σtn) (19)

+
1
2
(µ tn−µ tn−1

)T
Σ
−1
tn−1

(µ tn−µ tn−1
)− m

2
,

where |Σt | denotes the determinant of the matrix Σt , and KL(pn−1||pn) follows a
similar form.

For the linear regression model we may also in fact compute the density function
p∗(t) analytically (see Appendix A), which is proportional to the normalised den-
sity function over the temperature (9). Thus we may compute p∗(t) for t ∈ [0,1] and
use the results to guide our choice of temperature schedule to minimise the variance
of estimates. It is clear from this that low values of temperature will have higher
density p(t) due to the large values of expected deviance at lower temperatures. In
approximating the thermodynamic integral using deterministic numerical methods
this suggests a logarithmic or power style partitioning (see Figure 1).
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Fig. 1. The optimal density function p∗(t) is plotted (on the y-axis) against temperature (on
the x-axis) for the linear regression model. The continuous line represents p∗(t) for a 2D
model and the dotted line p∗(t) for a 20D model. Notice that as the variance of the prior
distribution decreases (i.e. as confidence in the prior increases), the introduction of new
information (equivalent to increasing t) has less of an effect on the optimal density, which
should be used to define the optimal temperature schedule.

3.2 Experimental Results

3.2.1 Choice of Temperature Schedule

Before comparing methods of estimating marginal likelihoods for linear regression
models, we firstly consider which types of temperature schedules should be em-
ployed with thermodynamic integration to achieve optimal results in terms of min-
imising the bias and variance of Monte Carlo estimates of marginal likelihoods.
These results complement and extend the insights offered by (Jasra et al., 2007)
who examine various temperature schedules using Population MCMC to sample
from mixtures of Gaussians, but only measure the accuracy induced by different
spacings by considering how closely the mean parameters are approximated for
each mixture component. In (Lartillot and Philippe, 2006) a uniform spacing is em-
ployed and the issue of temperature schedules is not considered at all, while Friel
and Pettitt (2008) give some discussion on the subject. To complement the current
literature, we measure the accuracy by calculating the bias in the discrete marginal
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likelihood estimates given by the KL divergence which, as we have shown, may be
computed analytically for linear regression models.

Tables 3 and 4 show the values associated with the relative bias introduced when
estimating the marginal likelihood using (15) and employing different temperature
schedules. The number of partitions used was also varied, to see to what extent the
bias decreases as the number of partitions used increases. The relative bias is de-
fined in log space as the ratio of the bias to the analytic marginal likelihood. Results
are given for linear regression models of 2 and 20 dimensions respectively. Table
2 shows the geometric-based temperature schedules, defining t1,...,N , that are used
for the comparison. A uniform distribution is included since this was used by Lar-
tillot and Philippe (2006). The optimal density function suggests the use of a power
law distribution and so geometric schedules are included which cluster intermedi-
ate temperature levels towards the prior (see Figure 1) and also the posterior for
comparison.
Table 2
Equations for generating the geometric-based temperature schedules used in the experi-
ments.

Uniform: ti = i
N

Prior: ti =
( i

N

)p

Posterior ti = 1−
( i

N

)p

In addition, Centered clusters the temperature points around 0.5 and Extremes clus-
ters the temperature steps towards both 0 and 1 and away from the middle. Both of
these schedules are generated based on scaling and combining points produced by
the prior and posterior schedules shown in Table 2. Higher powers, p correspond to
a more acute clustering of points.

From Table 3 it can be seen that methods which cluster more partitions towards
t = 0, corresponding to the prior, produce lower biases analytically than those
which cluster partitions towards t = 1, corresponding to the posterior, as suggested
by calculating p∗(t). Partitions skewed towards the posterior end of the scale per-
formed very badly, indeed much worse than a uniform distribution. Table 4 shows
similar results but in 20 dimensions. The results are very conclusive; even in 20 di-
mensions it is possible, using the right temperature schedule, to produce an estimate
with a relative bias of just 0.86% using only 30 partitions of the unit line.

Figure 2 shows, for 2 and 20 dimensional linear regression models, how the bi-
ases in the estimates decrease as the number of partitions used in the temperature
schedule increases. The drastically worse bias induced using a uniform spacing
may be seen in Figure 3. Note that even using 100 uniform partitions the bias is
much greater than when using just 10 partitions spaced according to a power law
(with p = 5). It is also clear that using a trapezoidal estimate of the thermodynamic
integral gives a much closer approximation for these linear regression models than
using either the upper or lower bound approximations (13) and (14) by themselves.
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Table 3
Relative bias introduced when using temperature schedules estimating the power posterior
integral via the trapezium rule for a 2 dimensional linear regression model varying the
number of partitions N.

Method Used Power Raised N=10 N=20 N=30 N=60 N=100

Uniform 1 311.7% 151.9% 99% 46.7% 26.2%

Centered 2 568.4% 295.6% 197.9% 97.2% 56.4%

Centered 3 711.5% 425.5% 290.8% 146.6% 86.6%

Extremes 2 12.8% 3.22% 4.83% 1.09% 0.13%

Extremes 5 11.8% 2.51% 1.09% 0.27% 0.09%

Prior 2 27.3% 5.54% 2.19% 0.56% 0.21%

Prior 5 3.41% 0.81% 0.36% 0.08% 0.03%

Prior 6 3.47% 0.84% 0.38% 0.08% 0.03%

Posterior 2 600.5% 303.7% 201.5% 98.1% 56.7%

Posterior 3 860.9% 448.3% 301.2% 149.3% 87.5%

Table 4
Relative bias introduced when using temperature schedules estimating the power posterior
integral via the trapezium rule for a 20 dimensional linear regression model.

Method Used Power Raised N=10 N=20 N=30 N=60 N=100

Uniform 1 600.2% 290.1% 188.2% 88.6% 50.3%

Centered 2 1101.5% 568.7% 379.0% 184.8% 107.1%

Centered 3 1503.5% 821.9% 559.3% 279.7% 164.4%

Extremes 2 113.2% 26.2% 11.1% 2.45% 0.81%

Extremes 5 24.4% 5.73% 2.53% 0.63% 0.22%

Prior 2 54.6% 12.6% 5.25% 1.14% 0.39%

Prior 5 7.88% 1.92% 0.86% 0.21% 0.07%

Prior 6 8.74% 2.13% 0.94% 0.23% 0.09%

Posterior 2 1164.3% 584.5% 386.0% 186.5% 107.6%

Posterior 3 1674.6% 866.7% 579.5% 284.9% 166.2%

We may also use the analytic expression of the minimum variance density p(t) (10)
for the linear regression model to visualise where the bulk of the density lies and
where significant changes of density occur. Plots proportional to the optimal density
functions for linear regression models of varying dimension are shown in Figure
1. The shape of these support our findings based on the bias values and suggest
that temperature schedules should be constructed with the intermediate temperature
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levels very definitely clustered towards t = 0, perhaps according to some kind of
power law distribution (as used in our experiments), since this is where the density
function has its concentration of mass and most rapidly changes shape.

Fig. 2. Marginal log-likelihood is plotted on the y-axis against the number of partitions used
on the x-axis. The temperature schedule here is chosen according to ti = (i/N)5. The upper
and lower dashed lines show the analytic log marginal likelihoods for 2 and 20 dimensional
linear regression models, respectively. The top and bottom lines for each dimension are the
upper and lower bounds, respectively, given by the KL divergence, and the middle lines are
the estimates using trapezoidal integration.

Fig. 3. Marginal log-likelihood is plotted on the y-axis against the number of partitions used
on the x-axis. The temperature schedule here is chosen according to a uniform spacing. The
dotted line gives the analytic log marginal likelihood for a 2 dimensional linear regression
model, the bottom and top lines are the upper and lower bounds, respectively, given by the
KL divergence, and the middle line is the estimate using trapezoidal integration. Very large
biases appear in the estimates due to the use of a uniform temperature schedule, especially
compared to the small bias from a power law temperature distribution.

15



In Figure 1, when the variance is greater than 1, the prior covers a large region of
the parameter space and the introduction of even a small amount of data, equivalent
to a small increase in temperature, results in a large change in the density function.
We observe that by setting the variance of the prior to a very small number, we are
in effect stating a huge confidence that the chosen restricted region of the parameter
space is the most likely. Thus it is no surprise that the introduction of data, equiva-
lent to increasing the temperature, has only limited effects on the density function.
We note that when modelling most kinds of systems, we will rarely be so certain of
the expected results as to be able to set such tight priors with variances of less than
0.01. Thus the majority of the time, it is likely that higher variance priors will be
employed, and so it seems sensible to construct any temperature schedule using a
power law distribution with temperature points strongly skewed towards the prior
(see also related discussion in (Friel and Pettitt, 2008)).

This also makes sense when considered from a sampling point of view, since when
using more advanced population MCMC methods to sample from a ladder of tem-
perature distributions we want the transitions to be as smooth as possible to allow
for a good mixing of chains (discussed later in Section 4.3).

It is interesting to see that using a simple uniform distribution of points to define
the temperature partitions produces poor estimates of the marginal log likelihood
integral, even for large numbers of partitions. This is in contrast with suggestions
made by Jasra et al. (2007), who advise that a uniform tempering schedule is gen-
erally a good choice when running population-based simulations. There are differ-
ences, however, in the criteria used for determining how well a temperature sched-
ule performs, which may account for the drastic difference in conclusions. In (Jasra
et al., 2007) the results are drawn on the basis of the resulting estimated compo-
nent means, whereas here the results are based on the estimates of the marginal
likelihoods. Clearly, it may be possible to have good mean estimates, even if the
samples used have quite a high variance, whereas estimates of marginal likelihoods
are not as forgiving if the samples used do not accurately cover the regions of high
density. In these examples the optimal results are obtained using a power law distri-
bution of temperature points skewed towards t = 0. From now on we therefore use
a quintic power law spacing to define the temperature schedule when estimating the
thermodynamic integral. It has not passed our attention that (10) provides a means
of adaptively setting the discretisation of the unit line, however we leave this for
future work.

3.2.2 Marginal Likelihoods over Linear Regression Models

We return to the main challenge of estimating marginal likelihoods in practice.
As a simple illustrative example consider a linear regression model with a zero-
mean unit-variance Gaussian prior on the regression coefficients. Given m = 30
samples of d covariates X ∈ Rm×d; d = {2,10,20}, and target values y ∈ Rm the
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marginal likelihood p(y|X) and power-posteriors p(β |X,y, t) can be obtained an-
alytically. Three estimators for the marginal likelihood are used: a Monte Carlo
estimate employing samples drawn from the prior over the regression coefficients,
a Monte Carlo estimate employing samples drawn from the posterior, also known
as the Harmonic Mean estimate, and the discretised numerical approximation of
the thermodynamic integral, based on estimating the sum of the expectations of the
power-posterior across each temperature interval (15). Each procedure is repeated
100 times to obtain the variance of the estimates. We vary the number of samples
used to estimate any expectations to examine the effect of this on the accuracy of
the marginal likelihood estimates.

The results are shown in Table 5 where we note that at 10 dimensions sampling
from the prior fails completely and even raising the number of samples to 10,000
makes little difference. On the other hand the Harmonic Mean estimator provides
a superior, albeit biased, lower variance estimate. However this level of bias is par-
ticularly dangerous when relying on Bayes factors to assess the odds in favour of
one model over another. In contrast, the quality of the estimates using the thermo-
dynamic integral is quite spectacular in terms of both bias and variance even at the
higher dimensions considered.

In the linear regression example (Table 5) each of the 30 temperature steps was
such that tn = (n/30)5. Interestingly, for a 2 dimensional model, a uniform spacing
produces a bias of −47.39 compared to the much smaller bias of −0.17 obtained
when tn = (n/30)5 is used.

Table 5
Marginal Log-Likelihood Estimates for Linear Regression Model. The analytic marginal
log-likelihoods for 2, 10 and 20 dimensions are P(y | x) = −47.87,−67.20 and −94.05,
respectively. The temperature ladder used in computing the power posterior consisted of
thirty discrete temperatures with tn = (n/30)5. The mean estimates and standard errors are
shown.

Samples d Prior Posterior Power Posterior

2 -49.68 ± 6.39 -42.21 ± 0.38 -48.04 ± 0.0013

1000 10 -417 ± 12088 -45.28 ± 1.62 -67.64 ± 0.0049

20 -698 ± (-) -50.28 ± 2.86 -94.86 ± 0.0089

2 -47.97 ± 0.18 -42.35 ± 0.19 -48.04 ± 0.0001

10000 10 -271 ± 3480 -46.03 ± 1.60 -67.64 ± 0.0005

20 -698 ± 125 -51.63 ± 1.63 -94.86 ± 0.0008

3.2.3 Bayes Factors over Linear Models

In this example we define two models which are linear in the parameters, generate
“experimental” data from the first model, and calculate the Bayes factor 100 times
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in order to see how accurately we can predict which model produced the data. The
experiments are then repeated using data generated from the second model. The
Bayes factors are calculated using both importance sampling and thermodynamic
integration methods, and the results are compared to the analytically calculated
Bayes factors. The marginal likelihoods are calculated under the same experimental
conditions as previously for the linear regression models. During the experiments
we again vary the number of samples used to investigate the effect of this on the
estimates. Note that when thermodynamic integration and sampling from the pos-
terior are employed to calculate Bayes factors, only up to 10,000 samples are used
due to computational time limitations. The two models are defined as

Model 1: y = β2x1 +β3x2. (20)
Model 2: y = β1x2

1 +β2x1 +β3x2. (21)

Bayes factors are calculated using data generated from the first model given by
(20), and then using data generated from the second model given by (21). The
parameter values used for generating the data are sampled from their Gaussian
prior distributions. When model 2 is used to generate data however β1 is manually
varied in order to simulate a more strongly (or weakly) non-linear model response.
A β1 value of 0.1 is used to show the case where the evidence in favour of model 2
is “not worth more than a bare mention”. β1 values of 0.15 and 0.16 are also used,
as these produce Bayes factors which are classed as “substantial” and “strong”,
respectively (but not “decisive”) and therefore represent cases where the accuracy
of the estimate could most affect the interpretation of the evidence. A summary of
how Bayes factors should be interpreted is given in Table 1.
Table 6
Bayes factor results, B1,2 using data generated from model 1. The analytic Bayes factor is
B1,2 = 28.3.

Samples Prior Posterior Power Posterior

1000 3.2E+16 ± 9.9E+28 2.39 ± 0.06 33.46 ± 3.26

10,000 968 ± 4.6E+7 2.52 ± 0.04 33.72 ± 0.42

100,000 30.5 ± 118 - -

The results for data generated from the first model are given in Table 6. We see that
thermodynamic integration offers the most consistently accurate results compared
to the true analytic Bayes factor value of 28.3. Sampling from the prior results in
completely uninformative results due to very high variances. When using 100,000
samples the mean Monte Carlo estimate is fairly accurate, although the variance
is still very high. We have already seen how sampling from the posterior results
in an overestimated marginal likelihood. When we calculate Bayes factors using
samples from the posterior, we observe that the Bayes factor is massively underes-
timated and, worryingly, the variance appears to be very small despite the huge bias.
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Indeed, when interpreted using the standard scale, the Bayes factor estimates based
on sampling from the posterior would suggest that the difference between the two
models is very definitely “Not worth more than a bare mention”, whereas the ana-
lytic Bayes factor suggests that the difference between models is in fact “Strong”.
The Bayes factor estimates based on posterior sampling are in this case unable to
distinguish between these simple linear models. In contrast, for the thermodynamic
integration method, the variance decreases rapidly as the number of Monte Carlo
samples used increase, and the estimates correctly state a high confidence that the
evidence in favour of model 1 is strong.

Table 7
Bayes factor results, B2,1, using data from model 2 with β1 = 0.10. The analytic Bayes
factor is B2,1 = 0.156.

Samples Prior Posterior Power Posterior

1000 0.174 ± 0.201 3.00 ± 0.09 0.132 ± 0.00004

10,000 0.166 ± 0.018 2.69 ± 0.05 0.130 ± 0.00001

100,000 0.150 ± 0.002 - -

Table 8
Bayes factor results, B2,1, using data from model 2 with β1 = 0.15. The analytic Bayes
factor is B2,1 = 6.92.

Samples Prior Posterior Power Posterior

1000 9.96 ± 387 133.8 ± 180.9 6.2 ± 0.07

10,000 5.82 ± 14.88 117.9 ± 98.2 6.15 ± 0.01

100,000 6.85 ± 2.07 - -

Table 9
Bayes factor results, B2,1, using data from model 2 with β1 = 0.16. The analytic Bayes
factor is B2,1 = 52.0.

Samples Prior Posterior Power Posterior

1000 75.9 ± 5.4E+4 1343 ± 1.9E+4 44.1 ± 4.09

10,000 48.6 ± 2907 1154 ± 9822 43.7 ± 0.58

100,000 52.4 ± 272 - -

Using data generated by model 2, we see again that thermodynamic integration
appears to offer the most accurate results in terms of exhibiting smallest bias and
variance (Tables 7, 8, 9). It correctly predicts the strength of evidence in favour of
model 2 for all values of β1. Sampling from the prior produced reasonable results,
but only when using a very large number of samples, and it should be noted that as
β1 increased the variance associated with its estimates also increased dramatically.
Sampling from the posterior produced very poor results. The estimated Bayes fac-
tors had large biases even when using a large number of samples. For β1 = 0.1,
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the difference between models based on posterior sampling are interpreted as being
borderline “Substantial”, when in fact it should be “Not worth more than a bare
mention”. For β1 = 0.15, the posterior-based estimates describe the difference be-
tween models as “Decisive” instead of merely “Substantial” and, for β1 = 0.16, as
“Decisive” instead of just “Strong”. This reinforces our impression that estimates
based on sampling from the posterior should not be blindly trusted.

4 Nonlinear ODE Models

We now apply the insights we have gained regarding the discretisation strategy
in thermodynamic integration, to the challenging application of estimating Bayes
factors over ODE based models. The quality estimates obtained from the thermo-
dynamic integral in Section 3.2.3 are perhaps not surprising given the well-behaved
(log-concave) nature of the densities associated with the linear regression model.
When the power-posterior is multimodal, and proper mixing difficult to achieve, the
standard Metropolis method of sampling the power-posteriors p(θ |Y,τ, t) presents
the danger of obtaining poor estimates for each Eθ |Y,τ,t{log p(Y|θ ,τ)}, since with-
out extreme care the Markov chains may easily converge to local maxima. Recent
advances in MCMC methodology suggest solutions to this problem of multimodal-
ity in the form of population-based MCMC methods (Jasra et al., 2007), which we
therefore implement to sample the structural parameters of our models.

Linear ODE models are not so useful for investigating this potential problem as
they induce log-concave posterior densities which, like the posteriors induced by
the linear regression models in the previous section, are straightforward to sample
from. We therefore turn our attention to nonlinear ODE models that induce multi-
modal posterior densities.

4.1 Bayesian Inference over Nonlinear ODE Models

We briefly introduce ordinary differential equation (ODE) models and give a brief
overview of how free model parameters may be inferred from experimental time-
series data using the Bayesian framework. A dynamical system may be described
by a collection of G ODEs and model parameters θ , which define a functional
relationship between the process state, x(τ) (where x(τ) is G dimensional, and τ

represents a point in time), and its time derivative ẋ(τ). Such a system of ODEs
may be written compactly as ẋ(τ) = f(x,θ ,τ) (where f is an G-dimensional vec-
tor field). A sequence of observations, y(τ), of the process we wish to model are
usually contaminated with some measurement error which is modeled as y(τ) =
x(τ) + ε(τ) where ε(τ) defines an appropriate multivariate noise process, e.g. a
zero-mean Gaussian noise process with variance σ2

g for each of the G states. If
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observations are made at T distinct time points, then the G× T matrices sum-
marise the overall observed system as Y = X + E. In order to obtain values for
X, the system of ODEs can be solved numerically, so that in the case of an ini-
tial value problem X(θ ,x0) denotes the solution to the system of equations at the
specified time points for the parameters θ and initial conditions x0. The poste-
rior density follows by employing appropriate priors such that p(θ ,x0,σ |Y) ∝

π(θ)π(x0)π(σ)∏g NYg,·(X(θ ,x0)g,·,Iσ2
g ), where N is a T -dimensional Gaussian

distribution evaluated at all observed time points, and the desired marginal p(θ |Y)
can be obtained from this joint posterior. A Metropolis style sampling scheme can
be devised to sample from the joint posterior. However, as a consequence of the
dynamics induced by the system, the corresponding likelihood surface defined by
p(Y|θ ,x0,σ) can present formidable challenges to standard sampling methods, as
will be demonstrated in the following example.

4.2 The Goodwin Model of Biochemical Oscillatory Control

As an illustrative example of the challenges of performing Bayesian inference
over nonlinear ODE model parameters and assessing the validity of alternative
model structures, we employ models of oscillatory enzymatic control, specifically
the Goodwin model (Goodwin, 1965). This model has become the standard ba-
sic mechanism for periodic protein expression, driven by a negative feedback loop
which inhibits mRNA transcription. Indeed, recent experimental evidence has shown
that essential elements of the circadian clock in many organisms consist of negative
feedback loops (Locke et al., 2005), similar to those in Goodwin’s original model.
The classical g-variable Goodwin model is defined as,

dx1

dτ
=

a1

1+a2xρ
g
−αx1

dx2

dτ
= k1x1−αx2 (22)

...
dxg

dτ
= kg−1xg−1−αxg,

where τ is time, x1 and x2 correspond to the levels of mRNA and protein in the sys-
tem, respectively, while x3 to xg correspond to other forms of proteins, with xg ulti-
mately inhibiting mRNA production. Output depends on the relationship between
the synthesis rate constants, a1 and k1,...,g−1, and the degradation rate constants,
a2 and α . It has been shown that this simple Goodwin model has unstable steady
states only when ρ > 8, and we therefore set ρ = 10 as a fixed parameter so that we
may be certain of oscillatory responses for a wide variety of parameter values. As g
increases, so does the time taken for the negative feedback to propagate through the
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system, enabling a more dynamic range of responses. A g-variable Goodwin model
therefore has g+2 tunable parameters. We note that while this simple model does
not precisely describe the actual biology occurring in nature, it does induce a poste-
rior distribution with the characteristic of multimodality common to the more com-
plex models currently in use, for example (Locke et al., 2005). We therefore use it
to elucidate the general problem of sampling from multimodal distributions which
commonly occur. (We note that such nonlinear genetic networks may alternatively
be modeled using stochastic differential equations within a Bayesian framework,
see e.g. (Golightly and Wilkinson, 2007)).

The set of parameters to be inferred is therefore θ = {α,a1,2,k1,...,g−1}. We also
denote any observed time series data by Y = [y1, ...,yg], where yg is the vector of
observed data for species g at the time points specified by the vector τ .

Fig. 4. Left plot: Posterior surface of two parameters of a Goodwin oscillator model (with
z-axis in log-scale). Right plot: The progress of twenty independent Metropolis samplers,
showing the starting positions (denoted by ×), path taken and finishing positions (denoted
by ◦). The trapping of chains in local modes is most apparent.

Consider the conditional posterior surface over two parameters of a Goodwin circa-
dian oscillator model (Goodwin, 1965) shown in Figure 4. We can see rather severe
ridges of high posterior values which cause a Metropolis sampler to get caught in
these local modes. The right plot in Figure 4 shows the trace of samples obtained
from 20 independent Metropolis samplers initialised at random parts of the param-
eter space, indicated by a ×, with the final sample denoted by a ◦. The localisation
of the chains on the ridges is all too apparent and we will see shortly how this
has a detrimental impact on the estimation of Bayes factors for model comparison.
As previously mentioned, a possible solution to this sampling problem is avail-
able through the use of population MCMC methods, see e.g. (Iba, 2000; Liang and
Wong, 2001; Laskey and Myers, 2003; Jasra et al., 2007). Such population MCMC
methods can be very efficient in the context of model comparison because not only
do they allow sampling from highly nonlinear multimodal posterior distributions,
but the usually redundant samples taken from intermediate temperatures may also
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be reused in the estimation of the marginal likelihood using thermodynamic inte-
gration (Friel and Pettitt, 2008).

4.3 Population-based MCMC

Population-based MCMC enables samples to be drawn from a target density p(θ)
by defining a product form of target density indexed by a temperature parameter t
such that

p̃(θ |t) =
N

∏
n=1

p(θ |tn), (23)

and the desired target density p(θ) is defined for one value of tn. It is convenient
to fix a geometric path between the prior and posterior, which we do in our imple-
mentation such that

p̃(θ |y, t) ∝

N

∏
n=1

π(θ)p(y|θ)tn, (24)

where π(θ) is the prior and p(y|θ)tn is the likelihood, for tn ∈ [0,1]. We note
that although other sequences are also possible (Gelman and Meng, 1998), this
particular formulation allows us to sample from all the required power posteri-
ors simultaneously, which may be later employed in thermodynamic integration.
A time homogeneous Markov transition kernel which has p(θ) as its stationary
distribution can be constructed from both local proposal moves and global moves
between the tempered chains of the population (Liang and Wong, 2001; Laskey
and Myers, 2003; Jasra et al., 2007) thus allowing freer movement within the pa-
rameter space. Local moves are made by selecting a chain at a some temperature
tn with parameters θ tn and adding a normally distributed random vector to cre-
ate a new proposed set of parameters, θ

′
tn . This new set of parameters is accepted

according to the standard Metropolis-Hastings acceptance ratio, with probability
min(1,r), where r = p(y|θ ′tn)

tn/p(y|θ tn)
tn . Global moves are made by randomly

selecting two adjacent temperatures tn and tn+1, and swapping over the param-
eter values of each chain, so that the proposed parameters are θ

′
tn = θ tn+1 and

θ
′
tn+1

= θ tn . These parameters are then accepted with ratio min(1,r), where now
r = [p(y|θ ′tn)

tn p(y|θ ′tn+1
)tn+1]/[p(y|θ tn)

tn p(y|θ tn+1)
tn+1].

The right hand plot of Figure 4 shows how each of the independent chains of a
Metropolis sampler, having only local moves, get stuck at various local modes
in the posterior density. Whereas in Figure 5 we see three tempered chains at
tn = {0.0001,0.5,1}, i.e. ranging from effectively the prior, to an intermediate
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Fig. 5. Left Plot: Samples obtained from a chain with t close to 0, which is sampling from
a smooth distribution strongly influenced by the prior, the free movement within the pa-
rameter space is quite clear to see. The iso-contours of the posterior are also plotted in
this case. Middle Plot: Progress of samples drawn from a chain at temperature t = 0.5 are
shown against the iso-contours of the full posterior, the free movement across modes is
most apparent and this is due to the exchange proposals between temperatures. Right Plot:
Samples drawn from the posterior when t = 1; compare this with the highly localised sticky
exploration in Figure 4. The ability to move between modes is clear.

power-posterior, and finally to the posterior itself at tn = 1. For tn close to 0 the
samples are being drawn from several of the modes in the posterior. Note that
these moves are due to local Metropolis moves as well as proposals which sam-
ple between different temperatures. At the intermediate temperature a much freer
traversal of the parameter space is possible, with large global mode-hopping steps
being made at tn = 1, which is the posterior distribution. Clearly the estimates of
Eθ |Y,τ,tn{log p(Y|θ ,τ)} at each temperature will be superior than those obtained
from a Metropolis sampler at every temperature and this will be highlighted in sec-
tion 4.4.

4.4 Parameter Identification via Posterior Inference

An oscillatory system response, consisting of 120 noisy observations of the first
two chemical species made at equally spaced time intervals, was obtained from a
g-variable Goodwin Model, for g = {3,5} with x1,...,g = 0 at time τ = 0. Gamma
priors were placed on the free parameters, such that a1:2,k1:g−1,α ∼ Γ(2,1). The
specific values of the parameters for both models were drawn from their chosen
prior Gamma distributions and Gaussian distributed noise with variance σ2 = 0.2
was added to the observations.

For a particular set of parameters, the error between the model output and the data
set was measured using a Normal distribution with variance σ2 = 0.2 (Note that
when using real experimental data the noise variance σ2 would be unknown and
could be inferred as an additional parameter). The overall likelihood was therefore
the product of these errors over all data points. Note however that only the last
80 data points were used for inference, to allow the models to settle into a steady
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oscillatory state from their initial values, which were fixed at 0.

For the g = 5 model, we show the conditional posterior for two of the model pa-
rameters in the left hand plot of Figure 4. The jagged nature of the posterior surface
hints at the challenge of appropriately sampling from the full g = 5-dimensional
posterior. The right hand plot of Figure 4 clearly shows that multiple Metropo-
lis samplers with adaptive proposal distributions suffer badly from poor mixing,
which motivates the adoption of Population MCMC methods.

Consider first the problem of model identification by posterior sampling. In the
first case, a Metropolis sampler with an adaptive proposal distribution was em-
ployed to obtain samples from the posterior. In the second case, a population of ten
Metropolis samplers were used, distributed along a temperature schedule given by
tn = (n/10)5. In addition to standard Metropolis moves, exchange and crossover
moves between temperatures were proposed, and these were tuned to ensure an ac-
ceptance rate in the range of 30% to 40%. Figure 6 shows the estimated marginal
posteriors for the g = 3 oscillator model obtained using the population MCMC
scheme and it is clear the regions of highest density are positioned around the ac-
tual parameter values. On the other hand the posteriors obtained from standard
Metropolis sampling have severely biased estimates of the posteriors, as can be
seen from Figure 7.

Fig. 6. The marginal posteriors obtained from population MCMC for each of the parameters
of a Goodwin oscillator model. The values of the true parameter values are indicated by
a black vertical line which coincides very well with the highest density regions of the
posteriors.

4.5 Model Comparison using Bayes Factors

Bayes factors were calculated for both Goodwin models, firstly using data gener-
ated from the 3 variable model, and then using data generated from the 5 variable
model. This allows us to test the discriminating capability of Bayes factors in this
setting. The required marginal likelihoods were estimated using power posteriors,
with a temperature ladder consisting of 10 discrete steps using a quintic power law
spacing. Monte Carlo estimates of the required expectations were obtained using
both an adaptive Metropolis sampler and a population MCMC method. Marginal
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Fig. 7. The posteriors obtained from a Metropolis sampler with adaptive proposal distri-
butions and convergence monitoring with the R̂ statistic (Gelman and Rubin, 1992; El Ad-
louni et al., 2006). The woeful bias in the estimates of the posteriors are most apparent
when compared to Figure 6.

likelihoods were calculated 10 times using each method for each combination of
model and data used. Averages and variances were then calculated.
Table 10
Marginal Log-Likelihoods & Bayes Factors for Goodwin Models Using Metropolis (Mean
± S.E.)

Simple Data Complex Data

Simple Model −586±22,715 −1,623±40,710

Complex Model −782±116,869 −600±891,103

logBS,C 195±205,745 -

logBC,S - 1,022±802,184
Table 11
Marginal Log-Likelihoods & Bayes Factors for Goodwin Models Using Population MCMC
(Mean ± S.E.)

Simple Data Complex Data

Simple Model −426±31 −1,432±37

Complex Model −536±67 −190±47

logBS,C 110±93 -

logBC,S - 1,242±117

Convergence of the Markov chains to a stationary distribution was carefully as-
sessed for each sampling method using the R̂ statistic (Gelman and Rubin, 1992).
This statistic was calculated with samples from parallel running chains, produced
from 3 parallel population MCMC simulations, to evaluate when the chains have
reached an equilibrium, by comparing the in-chain and between-chain variances.
1000 samples were stored once R̂ < 1.10 for each parameter at each tempera-
ture. The burn-in time was found to be around 10,000 iterations for the Metropolis
method, and 40,000 to 50,000 iterations for the population MCMC method.

In Tables 10 and 11, the 3 variable Goodwin model is referred to as the Simple
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Model, and the 5 variable Goodwin model as the Complex Model. From the es-
timated Bayes factors, we observe that the “true” models can be discriminated,
however, the variances of the estimates obtained using only Metropolis sampling
at each temperature are enormous (Table 10) making these estimates of little prac-
tical value for evidential based reasoning. These huge variances resulted from the
calculated Bayes factor sometimes favouring the “true” model and sometimes the
“wrong” model.

The variance of the estimates obtained when inter-chain moves are introduced
through the population MCMC procedure are at a hugely reduced level (Table 11)
making these low variance estimates such that they can be employed with high
confidence when assessing the evidential support in favour of a particular model.

5 Conclusions

In this paper we have reviewed three methods for estimating marginal likelihoods
and have gained important insights into the difficulties of calculating accurate Bayes
factors by considering simple linear regression models. We have highlighted the
dangers of employing the commonly used Posterior Harmonic Mean estimator and
shown that methods involving thermodynamic integration provide much more sta-
ble estimates. We have also characterised the error associated with the discretised
approximation of the thermodynamic integral in terms of the KL divergences be-
tween the posterior distributions across each temperature interval, and we have
shown that by using a temperature schedule with partitions clustered towards t = 0
it is possible to obtain estimates of the marginal likelihood with extremely small
bias.

We conclude that standard MCMC methodology is inappropriate for marginal like-
lihood estimation over highly nonlinear models, such as those based on nonlinear
ODEs, since even employing thermodynamic integration it may produce such high
variance estimates of Bayes factors as to render them completely uninformative.
Population MCMC methodology, on the other hand, may be elegantly combined
with the Thermodynamic Integral not only to sample simultaneously from a range
of tempered nonlinear posterior distributions, but also to produce low variance es-
timates of Bayes factors for informative model comparison.
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A Derivation of Optimal Density for Temperature Schedule

Here we derive the analytic expression of (10) for a linear model. This equation is
directly proportional to the optimal density function, p(t), introduced when inves-
tigating how to minimise the variance of marginal likelihood estimates for linear
regression models using thermodynamic integration. This expression may there-
fore be used to choose the optimal distribution of points in a temperature schedule,
by concentrating them around the regions of highest mass. We make use of the
following identities for the expectation operator (see The Matrix Reference Man-
ual, http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/intro.html), where β is a stochastic
vector drawn from a Gaussian distribution with mean µ , and covariance Σ.

E [Aβ +b] = Aµ +b. (A.1)

E
[
(Aβ +a)(Bβ +b)T ]= AΣBT +(Aµ +a)(Bµ +b)T . (A.2)

E
[
β

T Aβ

]
= Tr(AΣ)+ µ

T Aµ. (A.3)

E
[
(Aβ +a)(Aβ +a)T (Aβ +a)

]
(A.4)

=
(
2AΣAT +(Aµ +a)(Aµ +a)T)(Aµ +a)+Tr(AΣAT )× (Aµ +a).

E
[
(Aβ +a)T (Bβ +b)(Cβ + c)T (Dβ +d)

]
(A.5)

= Tr
(
AΣ(CT D+DT C)ΣBT)

+
(
(Aµ +a)T B+(Bµ +b)T A

)
Σ×

(
CT (Dµ +d)+DT (Cµ + c)

)
+
(
Tr(AΣBT )+(Aµ +a)T (Bµ +b)

)
×
(
Tr(CΣDT )+(Cµ + c)T (Dµ +d)

)
.

We wish to find an analytic expression for the following expectation (A.6) with
respect to a power posterior distribution for a particular temperature. For the lin-
ear regression model considered in Section 3, the power posterior distributions are
Gaussian, with mean µ t , and covariance Σt (section 3.1.1). We proceed by first
multiplying out the brackets and noting that the expectation operator is linear
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E

[(
−m

2
log2πσ

2− 1
2σ2 (y−Bβ )T (y−Bβ )

)2
]

(A.6)

=
m2

4
(log2πσ

2)2 +E

[
m

2σ2 log2πσ
2(y−Bβ )T (y−Bβ )

]

+E

[
1

4σ4 (y−Bβ )T (y−Bβ )(y−Bβ )T (y−Bβ )

]
,

where E denotes the expectation with respect to the Gaussian distribution p(β |
y, t,σ2,ζ 2), as will be used from now on. An analytic expression for the second
term in (A.6) may be found using identity (A.2)

E
[ m

2σ2 log2πσ
2(y−Bβ )T (y−Bβ )

]
=

m
2σ2 log2πσ

2E
[
(y−Bβ )T (y−Bβ )

]
=

m
2σ2 log2πσ

2 [BΣBT +(y−Bµ)T (y−Bµ)
]
.

The third term also has an analytic form, however a bit more work is required to
calculate it. We start by multiplying out the middle two brackets and then multiply-
ing the result by the outer two brackets, which splits the third term down into the
following three expressions

1
4σ4 E

[
(y−Bβ )T (y−Bβ )(y−Bβ )T (y−Bβ )

]
=

1
4σ4 E

[
(y−Bβ )T yyT (y−Bβ )︸ ︷︷ ︸

Expression 1

−2(y−Bβ )T BβyT (y−Bβ )︸ ︷︷ ︸
Expression 2

+(y−Bβ )T Bββ
T BT (y−Bβ )︸ ︷︷ ︸

Expression 3

]
.

The expectation of Expression 1 may be calculated by multiplying out the brackets
and using (A.1) and (A.3)
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E
[
(y−Bβ )T yyT (y−Bβ )

]
= E

[
(yT yyT −β

T BT yyT )(y−Bβ )
]

=(yT y)2−2E
[
yT yyT Bβ

]
+E

[
β

T BT yyT Bβ

]
=(yT y)2−2yT yyT Bµ +Tr(BT yyT BΣ)+ µ

T BT yyT Bµ.

The expectation of Expression 2 may be broken down into four further expressions

E
[
−2(yT −β

T BT )BβyT (y−Bβ )
]

=−2E
[
(yT BβyT −β

T BT BβyT )(y−Bβ )
]

=−2E
[
yT BβyT y

]︸ ︷︷ ︸
Expression 2a

+2E
[
yT BβyT Bβ

]︸ ︷︷ ︸
Expression 2b

+2E
[
β

T BT BβyT y
]

︸ ︷︷ ︸
Expression 2c

−2E
[
β

T BT BβyT Bβ

]
︸ ︷︷ ︸

Expression 2d

.

Expression 2a admits an analytic form trivially as follows

E
[
yT BβyT y

]
= yT yE

[
yT Bβ

]
= yT yyT Bµ.

Expression 2b admits an analytic form using (A.3)

E
[
yT BβyT Bβ

]
= E

[
β

T BT yyT Bβ

]
= Tr(BT yyT BΣ)+ µ

T BT yyT Bµ.

Expression 2c may be written analytically also using (A.3)

E
[
β

T BT BβyT y
]
= yT yE

[
β

T BT Bβ

]
= yT y(Tr(BT BΣ)+ µ

T BT Bµ).

Expression 2d admits an analytic form making use of (A.5)

E
[
β

T BT BβyT Bβ

]
= E

[
(Bβ )T (Bβ )yT (Bβ )

]
= yT (2BΣBT +Bµ(Bµ)T)Bµ +Tr(BΣBT )× (Bµ).

Finally, the expectation of Expression 3 may be written analytically using (A.5)
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E
[
(y−Bβ )T Bββ

T BT (y−Bβ )
]

= Tr
(
2BΣ(BT B)ΣBT)

+
[
(−Bµ +y)T B− (Bµ)T B

]
Σ×

[
BT (−Bµ +y)−BT Bµ

]
+
[
Tr(−BΣBT )+(−Bµ +y)T (Bµ)

]
×
[
Tr(−BΣBT )+(Bµ)T (−Bµ +y)

]
.
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