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Insulin and other hormones control target cells through a
network of signal-mediating molecules. Such networks are
extremely complex due to multiple feedback loops in combina-
tion with redundancy, shared signal mediators, and cross-talk
between signal pathways. We present a novel framework that
integrates experimental work and mathematical modeling to
quantitatively characterize the role and relation between co-
existing submechanisms in complex signaling networks. The
approach is independent of knowing or uniquely estimating
model parameters because it only relies on (i) rejections and
(ii) core predictions (uniquely identified properties in unidenti-
fiable models). The power of our approach is demonstrated
through numerous iterations between experiments, model-
based data analyses, and theoretical predictions to characterize
the relative role of co-existing feedbacks governing insulin sig-
naling. We examined phosphorylation of the insulin receptor
and insulin receptor substrate-1 and endocytosis of the receptor
in response to various different experimental perturbations in
primary human adipocytes. The analysis revealed that receptor
endocytosis is necessary for two identified feedback mecha-
nisms involving mass and information transfer, respectively.
Experimental findings indicate that interfering with the feed-
back may substantially increase overall signaling strength, sug-
gesting novel therapeutic targets for insulin resistance and type
2 diabetes. Because the central observations are present in other
signaling networks, our results may indicate a general mecha-
nism in hormonal control.

Hormonal control of target cells involves signal transduction
from ligand-activated receptors to control of rate-limiting
enzymes or proteins that affect key steps inmetabolismor other
processes within the cell. The signal transduction is carried out
by a network of interacting signal mediators. A high degree of

complexity is due to the presence of feedback and feed-forward
loops, both negative and positive, and the fact that the impor-
tance of different interactions changes over time and according
to intracellular location. This, in combination with redun-
dancy, shared signal mediators, shared signal paths, and ample
cross-talk between signals, leads to a complexity that poses new
challenges to progress in dissecting and understanding cellular
control. Many diseases, such as cancer and insulin resistance
and type 2 diabetes, arise from malfunctioning in signaling
networks.
Insulin controls target cells through binding to its receptor at

the cell surface (1), which activates the intracellular domains of
the insulin receptor (IR)4 to trans-autophosphorylate at specific
tyrosine residues. The receptor can then transduce the insulin
signal into the cell and to its various effectuating systems, such
as glucose uptake and antilipolysis. Foremost of the directly
downstream signal-mediating proteins are members of the
insulin receptor substrate (IRS) family, in particular IRS1,
which is rapidly phosphorylated at specific tyrosine residues by
the activated receptor. The IR and IRS1 are in adipocytes co-
localized to caveolae invaginations of the plasma membrane
(2–5). IR is rapidly endocytosed in response to insulin stimula-
tion of adipocytes, and it appears that the phosphorylated
receptor is internalized into the endosomal compartment (6, 7).
In accordance with the known properties of caveolae, very little
IR is internalized in the absence of insulin stimulation (6). The
function of internalization is not clear, and suggestions imply-
ing both positive and negative effects have been proposed:
down-regulation of the insulin response by receptor degra-
dation, clearance of insulin from the circulation by insulin
digestion, and internalization as part of the insulin signal
transduction.
Insulin signaling and the role of internalization illustrate a

general limitation in our understanding of signaling systems;
the central skeleton has often been established, but the quanti-
tative importance of states and subprocesses remains unde-
termined. For instance, although a signaling intermediate (a
specific state of a protein or a protein complex) has been
established as mediating the signal transduction, it is typi-
cally not known how quickly it is formed and eliminated or
how its absolute concentration varies over time. It is also
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typically not known how important a particular state or sub-
process is for the overall signal transduction process. These
limitations have remained because, except in special cases,
we can neither measure nor perturb such detailed states and
subprocesses individually but only indirectly through per-
turbations and measurements of lumped states. The pro-
cesses are also so intertwined that conclusions about the
details of the processes cannot be obtained by biochemical
reasoning. Mathematical modeling emerges as a potent tool
for data analysis and for dissection of such complex pro-
cesses. However, the study of biological signaling systems
poses new challenges also for mathematical modeling. The
complexity of the underlying processes implies that the
hypotheses the mathematical models seek to capture involve
many parameters, whose values typically depend on cell
type, experimental conditions, etc. For this reason, the indi-
vidual parameter values usually remain underdetermined
(i.e. guessed or non-uniquely estimated). This is an impor-
tant problem because, if not accounted for, it implies that
also the conclusions and predictions from the model will be
non-unique and sometimes even arbitrarily unreliable.
We here report a comprehensive integrated experimental/

mathematical modeling study that presents a framework to cir-
cumvent the problem of undetermined parameter values. We
used numerous iterations between experiments, model-based
data analysis, and theoretical predictions to characterize the
early phase of insulin signaling in primary human adipocytes.
We show that an internalization-mediated feedback mecha-
nism is a necessary component in producing an observed signal
overshoot. These new mechanistic insights demonstrate that
an integratedmathematical-experimental approach is a power-
ful analysis tool, which has the potential to overcome some of
the hurdles to progress posed by the inherent complexity of
signaling networks.

MATERIALS AND METHODS

Subjects—Abdominal subcutaneous fat was obtained from
elective abdominal surgery at the University Hospital in Linkö-
ping. Informed consent was obtained from participating indi-
viduals; procedures were approved by the local ethics commit-
tee at Linköping University and were performed in accordance
with the Declaration of Helsinki.
Materials—Mouse anti-phosphotyrosine (PY20) monoclonal

antibodies were from Transduction Laboratories (Lexington,
KY). Rabbit anti-IRS1 polyclonal and mouse anti-phosphoty-
rosine (4G10) monoclonal antibodies were from Upstate Bio-
technology, Inc. (Lake Placid, NY). Rabbit polyclonal anti-insu-
lin receptor �-subunit and anti-actin antibodies were from
Santa Cruz Biotechnology, Inc. (Santa Cruz, CA). Methyl-�-
cyclodextrin was obtained from Sigma.
Isolation and Incubation of Adipocytes—Adipocytes were

isolated from subcutaneous adipose tissue by collagenase (type
1; Worthington) digestion as described (8). Cells were treated
and incubated in supplemented Krebs-Ringer solution as de-
scribed (9).
SDS-PAGE and Immunoblotting—To minimize postincuba-

tion signaling and protein modifications, which can occur dur-
ing immunoprecipitation, cells were immediately dissolved in

SDS and �-mercaptoethanol with protease and protein phos-
phatase inhibitors, frozen within 10 s, and thawed in boiling
water for SDS-PAGE and immunoblotting (8). Membranes
were incubated with antibodies and detected using ECL�
(Amersham Biosciences) with horseradish peroxidase-conju-
gated anti-IgG as secondary antibody, evaluated by chemilumi-
nescence imaging (Las 1000, Fuji, Tokyo, Japan), and normal-
ized against the amount of actin in each sample.
Determination of IR Internalization—An intracellular mem-

brane fraction of adipocytes, preincubated with or without 100
nM insulin for 10 min, was prepared by homogenization as
described (10). Thehomogenatewas centrifuged at 1000� g for
10min to remove fat, nuclei, and cell debris. Plasmamembrane
and mitochondria were removed by centrifugation of the
1000� g supernatant at 16,000� g for 20min. The supernatant
was centrifuged at 210,000 � g for 75min to pellet intracellular
membranes. The pellet was resuspended in 50mMTris, pH 7.4,
with 1 mM EDTA and a mixture of protease inhibitors. Control
and insulin-stimulated whole cell lysates and the intracellular
membrane fractions were compared using SDS-PAGE and
immunoblotting for the IR.
Mathematical Models—Models are formulated using ordi-

nary differential equations (ODEs) with the following notation,

dx/dt � f�x,p� (Eq. 1)

y � g� x,p� (Eq. 2)

where x represents the states (here corresponding to concen-
trations or amounts of the specific protein modifications); p
represents kinetic constants or scaling parameters; y contains
the measurement signals; and f and g are smooth well behaved
nonlinear functions. All models analyzed in this work are pre-
sented as interaction graphs in supplemental Fig. S1. These
interaction graphs exactly describe the dynamic part of the
ODE (the function f(x,p)), if the reaction rates are given, accord-
ing to the standard summation of rates, which is briefly sum-
marized in Ref. 12 and in the supplemental material. The reac-
tion rates are described bymass action kinetics, possiblymodified
by multiplication with the concentration of the protein kinase.
The output function, g(x,p), corresponds to normalizations and
unknown scaling factors between the concentrations or
amounts and the measured signals. These normalizations are
described in the figure legends. (All models, simulations, and
optimizations are fully described along with all used Matlab
scripts in the supplemental material).
All models are denoted M followed by an italic letter speci-

fying the corresponding hypothesis (d,m, f, i, or if). A final letter
(a, b, c, or d) specifies the specific model structure, which
becomes a model if the model structure is associated with a set
of parameter values.
A Modified Optimization Approach—A key aspect of our

approach is that it is not centered around specific parameter
values that need to be known or estimated, but around data and
model structures, which implicitly determine the entire set of
acceptable parameters. The characterization of this set requires
non-standard optimization algorithms, which do not return a
single (ideally global) optimum but return sets of parameters
giving a cost lower than a certain threshold. We are then look-
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ing for model properties that are shared among all of these
parameter values. The optimization algorithms should therefore
ideally return widely spread acceptable parameters. Because no
such optimization algorithms are readily available, we modified a
simulated annealing approach, which was implemented in the
Systems Biology Toolbox for MATLAB, to fit our purposes. This
annealing approach is normally combined with a nonlinear sim-
plex,which is searching locally anddownhill for low temperatures,
but potentially also uphill for higher temperatures. Here the term
“temperature”describeshowmuch the searchalgorithmmaypro-
ceed to parameters with higher cost function values. The temper-
ature is lowered in discrete steps, and for each new temperature in
the standard implementation, a single new simplex is initiated at
the best parameter found so far. The keymodification in ourmod-
ified algorithm is to restart several new simplexes, which lie far
away from each other according to a certain distance measure.
This distance measure is basically the Euclidian distance, using a
standardmodification that takes the dimensionality of the optimi-
zation problem into account. Then all parameters evaluated dur-
ing the optimization andwith a cost below the given threshold are
savedandanalyzedusing simulations andmanual inspections.We
are particularly interested in model properties that are shared
among all acceptable parameter sets, which we denote core pre-
dictions. Previous analysis on test problems with analytically
known cost functions showed that this new algorithm appears to
be a robust and well functioning approach for the 5–25 dimen-
sional problems that we encounter (11).5 Note that this approach
gives an improved spreadof theparameterswithoutmodifying the
cost function.More technical details concerning the optimization
and thenewalgorithmare given in the supplementalmaterial, and
the implemented algorithm is provided along with the optimiza-
tion scripts. The entire approach is outlined in Fig. 3 and is further
described under “Results and Discussion.”
Statistical Analysis and Assumptions—The core prediction

analysis is used to identify experiments that (if the core predic-
tions are not fulfilled) should reject the model, but the actual
rejection is done using classical optimization and hypothesis
testing methods. Once a core prediction has been measured
experimentally, the model giving the prediction is optimized to
the expanded data set, and tested using a �2 test (13).

Our choices for the modeling were based on a number of
assumptions. We used ODEs because we do not have data with
a high spatial resolution, and the natural assumption is to con-
sider the cells as well mixed. Further, we modeled the internal-
ization of IR and IRS1 as independent processes and restricted
the possibilities for insulin binding and dissociation to avoid
combinatorial explosion. We assumed that the noise can be
approximated by purely measurement noise, that it is normally
distributed, and that the S.E. value can be approximated by
repeats of the same experiment.

RESULTS AND DISCUSSION

Hypotheses and Mechanistic Models for Early Insulin
Signaling—Tobetter understand the role of internalization and
other mechanisms that govern the initial phase of insulin sig-
naling, we (12) examined the phosphorylation of IR and IRS1 in

human primary adipocytes. We found a transient overshoot in
the steady-state phosphorylation of both IR and IRS1; the phos-
phorylation reached a peak within 2 min of the addition of
insulin, followed by a lower quasi-steady-state phosphorylation
(Fig. 1, A–C). In Ref. 12, we analyzed what conclusions can be
drawn from this overshoot observation alone. That the over-
shoot appeared already in the phosphorylation of the IR implies
that we should look for mechanisms that negatively affect the
phosphorylation of IR directly but with a time delay. In Ref. 12,
we rejected a large number of model structures and identified
two fundamentally different acceptable model structures,
which could not be rejected or distinguished from those data. In
this work, we further characterize the system using an iterative
experimental/theoretical modeling approach. We start by
introducing two new non-rejectable hypotheses, giving a total
of four fundamentally different mechanisms that can generate
the observed overshoot (Fig. 2): (i) insulin degradation (i.e.
decreased phosphorylation because the concentration of insu-
lin in the medium is being reduced (Md)); (ii) competitive inhi-
bition and other interaction schemes at the plasma membrane
alone (Mm); (iii) negative feedback signals from downstream
intermediates (Mf); (iv) down-regulation through internaliza-
tion and dephosphorylation of IR (Mi).
These hypotheses are negative feedbacks but of a fundamen-

tally different character: some (e.g. iv) involve transfer of mole-
cules, and some (e.g. iii) involve transfer of information. They
include the assumption that non-stated mechanisms are not
present in such a way that they might cause the overshoot. For
instance, the degradation hypothesismight include internaliza-
tion but not the crucial dephosphorylated internalized state
that leads to an overshoot from the internalization itself (12)
(supplemental Fig. S1). We examine various detailed variations
of these hypotheses, and details are added only as they are
needed to explain additional experimental data sets (all models
and Matlab scripts are available as downloadable simulation
and optimization files; see “Materials and Methods”). The dif-
ferent versions of a hypothesis are implemented through differ-
ent model structures and referred to as, for example, Mda or
Mdb, which correspond to the first and second version of the
degradation hypothesis, etc. (see “Materials and Methods”).
Rejection of the Insulin Degradation Model through Statisti-

cal Testing and through Experimental Testing of Uniquely Iden-
tified Core Predictions—In hypothesis Md, insulin is degraded
so that the concentration of insulin is declining in the medium
(e.g. by insulin binding to IR followed by lysosomal degradation
or by insulin-degrading enzymes at the cell surface) (Fig. 2).
This hypothesis can indeed produce an overshoot behavior
(Fig. 1, B and C). We will now show why this hypothesis is
rejected anyway and in the process introduce the two main
steps of our analysis: (i) hypothesis testing based on experimen-
tal data and (ii) experimental testing of uniquely identified core
predictions (Fig. 3).
The first Md model we tested, Mda (supplemental Fig. S1),

includes only insulin degradation through lysosomal degrada-
tion. Mda includes internalization, but it does not include the
crucial state that has been dephosphorylated but not yet recy-
cled to the plasma membrane. This model structure does not
produce an overshoot due to the internalization itself (i.e. if5 G. Cedersund, manuscript in preparation.
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insulin is a fixed parameter) (12). However, when insulin is
considered as a limited pool in an extracellular volume reason-
ably different from the intracellular volume, themodel can pro-
duce an overshoot (supplemental Fig. S2, A and B). This model

structure is accepted, and we pro-
ceed to phase II, core prediction
analysis.
Despite different ways and widely

different parameters for producing
the overshootwith thismodel struc-
ture, all of them exhibit the peak of
IR phosphorylation (but not of
IRS1 phosphorylation) earlier than
0.1 min (supplemental Fig. S2A and
Table 1). We refer to that type of
uniquely identified properties as
core predictions. This concept,
which has been introduced by us
(13), relieves us from the limitation
of interpreting results for one par-
ticular set of parameter values. The
problem with analysis at a single
parameter point is that parameter
values usually are more or less
guessed or non-uniquely estimated
from the experimental data; this
leads to similarly guessed or non-
uniquely estimated model predic-
tions. In practice, we identify the
uniquely identified core predictions
by first approximating the entire
space of acceptable parameters
(i.e. all parameters that yield cost
functions that are statistically
indistinguishable from the best
value). Importantly, our optimization
method is designed to especially
search for acceptable parameters that
lie far away from each other in a
Euclidian fashion without adding an
extra modification to the cost func-
tion (see “Materials and Methods”
and supplemental material).We then
analyze the model behavior over this
entire set of parameters, and model
properties that are shared among all
acceptable parameters are considered
as core predictions (Fig. 3).
Mda thus has the core prediction

that the time of the peak phosphor-
ylation of IR occurs before 0.1 min.
Experimentally, a lower boundary
for the time of the peak value of IR
phosphorylation was around 1 min
(Fig. 1A). Hence, the core prediction
of Mda is not fulfilled, and the
model should probably be rejected.
We also tested two other similar

model structures,Mdb andMdc (supplemental Fig. S1). These
are more complex variations ofMda but differ only in that they
have more internalized states and more reactions between the
states. Nevertheless, also these model structures are unable to

FIGURE 1. Experimental data and core predictions for overshoot behavior. A, short term detailed time
course for phosphorylation of IR (green) and IRS1 (blue) in response to 10 nM insulin. The extent of phosphor-
ylation is expressed as a percentage of maximum in each experiment (n � 4 (IR) and n � 5 (IRS1), independent
experiments, subjects) and presented as mean � S.E. (error bars). B, the experimental data for phosphorylation
of IR in response to 100 nM insulin (mean � S.D. (error bars), blue) are compared with different simulations that
correspond to acceptable parameters for model Mdd (red). C, the experimental data for phosphorylation of
IRS1 in response to 100 nM insulin (mean � S.D. (error bars), blue) are compared with different simulations that
correspond to acceptable parameters for model Mdd (red). D, experimental determination of insulin concen-
tration. Adipocytes were incubated with insulin for 30 min. The concentration of insulin in the medium was
determined directly after the addition of insulin and after 30 min. Insulin was determined by enzyme-linked
immunosorbent assay, using a kit from Mercodia (Uppsala, Sweden). Values are mean � S.E. (error bars), n � 3.
E, steady-state dose-response phosphorylation of IRS1 in response to the indicated concentration of insulin
after a 10-min incubation. The extent of phosphorylation is expressed as a percentage of maximum (mean �
S.D. (error bars)) (n � 7, independent experiments, subjects) (blue) and compared with different simulations
that correspond to acceptable parameters for model Mmb (red). F, time course for phosphorylation of IRS1 in
response to a two-step addition of insulin to a final concentration of 1.2 nM at 0 min and 10 nM at 4 min. The
extent of phosphorylation is expressed as a percentage of maximum (mean � S.D. (error bars)) (n � 8, inde-
pendent experiments, subjects) (blue) and compared with different simulations that correspond to acceptable
parameters for model Mmb (red).
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produce a peak value for IR phosphorylation later than 0.1 min
and should thus probably also be rejected.
To validate the predicted rejections, we undertook a more

conventional two-step hypothesis testing approach. First, the
models were optimized to the complete data set, here including
both the overshoot data (Fig. 1,B andC) and the experimentally
measured peak time (1.3 � 0.2 min). Note that this involves a
classical optimization, seeking only the best parameters, and
that the cost function should be a �2 measure without ad hoc
punishments. Second, the resulting agreement with the data is
evaluated using a �2 test. For the most complex model, Mdc,
this gave a test function value of 116,which should be compared
with a threshold of 38.9 for a 95% �2 distribution with 26
degrees of freedom (the number of data points). In other words,
the core prediction successfully identified a crucial experi-
ment (i.e. an experiment that implies a rejection of the model if
the core prediction is not fulfilled); this serves as a validation of
the core prediction analysis.
We identified one model structure that does not have the

problem of a too early peak time: Mdd (supplemental Fig. S1).
This model structure includes insulin degradation both through
lysosomal degradation and through direct degradation in the
extracellularmedium (corresponding to insulin-degrading pro-
cesses at the plasma membrane).Mdd does not have the same
spike-like rise in IR phosphorylation (Fig. 1B) and is able to
produce a rise that is equally smooth as that produced byMda
to -c for phosphorylation of IRS1 only (Fig. 1C). We therefore
looked for core predictions also for Mdd and found one that

could be experimentally tested, the extracellular concentration
of insulin. Mdd predicts that �95% of the insulin is degraded
within the first few min (supplemental Fig. S2D). This predic-
tion is shared among all acceptable parameter values and is thus
a core prediction (i.e. a uniquely identified model property).
Experimentally, the extent of degradation of insulin over 30
min was negligible (Fig. 1D). The core prediction is thus not
fulfilled, and also Mdd should probably be rejected. We vali-
dated this core prediction-based rejection in the same way as
above, by fitting the model to the complete data set (overshoot
and amount of degradation) and evaluating the agreement
using a �2 test. The test function gave a value of 80, which
should be compared with a �2 threshold value of 38, implying a
validated rejection. All of this evidence taken together led us to
reject the Md hypothesis (see Table 2, which summarizes this
and all similar conclusions).
Collection of a Set of StandardData; Single-step, Double-step,

and Dose-response Curves—To differentiate between the three
remaining acceptable explanations for the overshoot data (Mm,
Mf, andMi) (Fig. 2), we searched to find experimentally testable
core predictions that are different in these different hypotheses.
However, the uncertainty of the predictions was too high
(supplemental Fig. S2, N and O). Furthermore, many of the
predicted behaviors lay outside the known behaviors of the sys-
tem. For instance, the remaining models could at this point
predict that 100 nM insulin treatment corresponds to less than
10% of maximal response (supplemental Fig. S2N), whereas we
know that 100 nM treatment corresponds to saturation and

FIGURE 2. Outlines of the four main hypotheses for explanation of overshoot behavior. Shown are insulin degradation (Md), complicated interactions at
the plasma membrane (Mm), feedbacks from downstream intermediates (Mf), and internalization of IR (Mi).
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maximal response. To avoid these problems with realism and
nonspecific predictions, we collected more informative data:
dose responses andmultiple stimulations with insulin (Fig. 1, E
and F). We refer to the resulting data (Fig. 1, B, C, E, and F) as
the standard data. The three hypotheses Mm, Mf, and Mi are
all able to describe these standard data (supplemental Figs.

S2 (I–M) and S3 (D–G)), although some specific model struc-
tures could be rejected: Mma, Mia, and Mfa (supplemental
Figs. S1, S2H, and S3C). Further, previously identified uncertain
or unrealistic predictions are now much improved (compare
supplemental Fig. S2O with supplemental Fig. S2P).
Testing of Different Core Predictions with Respect to Blocking

of Internalization—We now return to identification of core
predictions that can distinguish between the remaining hypo-
theses. Blocking of internalization is an experiment where the
three hypotheses yield different predictions; Mf and Mm pre-
dict that the overshoot remains, but Mi predicts that it disap-
pears (supplemental Fig. S3I).
We blocked endocytosis of IR by lowering the temperature,

which eliminates membrane vesicularization and fission (14).
At 11 °C, the transient phosphorylation overshoot was gone

FIGURE 3. Outline of the experimental/modeling strategy. The upper part shows the two main steps (phases I and II) in the modeling that can be done robustly for
unidentifiable models. The lower part shows phase II in more detail: calculations of core predictions (i.e. uniquely identified model properties also for unidentifiable
models).

TABLE 1
Spread of parameters for model Mdc
Columns 2 and 3 show the maximum and minimum values found by our modified
optimization algorithm (i.e. when searching for all acceptable parameters giving a
non-rejectable agreement with the overshoot data). As can be seen, many parame-
ters can take values over many orders of magnitude. The last two columns display
the boundaries set for the search. Note that some found values lie slightly outside
these boundaries because the optimization algorithm sometimes evaluates such
points as well. All parameters, models, and optimization scripts for all evaluated
models are available in the supplemental material.

Parameter
name

Maximum
found

Minimum
found

Maximum
boundary

Minimum
boundary

k1 59 0.38 5e5 1e�5
km1 7.3e4 1e�5 5e5 1e�5
k2 6.2e5 6.2e2 5e5 1e�5
k3 3.6e5 4.9e3 5e5 1e�5
km3 76 1e�5 5e5 1e�5
k4 5.8e5 1e�5 5e5 1e�5
k5 5e5 1.8e3 5e5 1e�5
k6 7 0.21 5e5 1e�1
km6 11 2.2 15e4 1e�1
kY1 5.3e3 46 1e5 10
kY2 4.4e3 10 1e5 10
kY3 5.9e3 45 1e5 10
kY4 3.5e3 10 1e5 10
Volfrac 0.013 0.001 0.01 0.001
k7 6.2e5 0 5e5 0

TABLE 2
Summary of the data, models, and conclusions
Rows correspond to different sets of data, and columns correspond to different
hypotheses. OK indicates that the hypothesis can explain the data, and Fail indicates
that the hypothesis is rejected.

Experimental data
Models

Md Mm Mf Mi Mfi

Overshoot OK OK OK OK OK
Insulin in medium Fail OK OK OK OK
Standard data OK OK OK OK
Blocking of internalization Fail Fail OK OK
Extent of internalization Fail OK

Integrated Experimental/Modeling Analysis

20176 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 285 • NUMBER 26 • JUNE 25, 2010

 at Linkopings universitetsbibliotek. P
eriodica, on M

arch 31, 2011
w

w
w

.jbc.org
D

ow
nloaded from

 

http://www.jbc.org/cgi/content/full/M110.106849/DC1
http://www.jbc.org/cgi/content/full/M110.106849/DC1
http://www.jbc.org/cgi/content/full/M110.106849/DC1
http://www.jbc.org/cgi/content/full/M110.106849/DC1
http://www.jbc.org/cgi/content/full/M110.106849/DC1
http://www.jbc.org/cgi/content/full/M110.106849/DC1
http://www.jbc.org/cgi/content/full/M110.106849/DC1
http://www.jbc.org/cgi/content/full/M110.106849/DC1
http://www.jbc.org/


(Fig. 4A). Lowering the temperature also reduced the response
time because a lower temperature implies smaller rate con-
stants. Interestingly, both the maximal and steady-state phos-
phorylation levels in response to insulin were increased (Fig.
4B). This shows that interfering with the mechanisms causing
the overshoot may significantly increase the signaling strength.
Because cooling is a rather nonspecific intervention, we also
blocked internalization by reducing the amount of cholesterol
in the plasma membrane, which eliminates caveolae invagina-
tions in fat cells (15) and therefore IR internalization (6). Also,
this inhibition of IR internalization removed the overshoot (Fig.
4C) with a significance of	0.05 (see “Materials andMethods”),
which also implies a significant rejection of hypothesesMm and
Mf (Table 2).
Internalization IsNot a SufficientMechanism—In a final iter-

ation of the analysis experiment cycle (Fig. 3), we now show that
the remaining hypothesisMi has to be rejected as well.We have
showed that the internalization model Mi has to include the
state IRi, which is internalized and dephosphorylated but not
yet recycled to the plasma membrane and available to be phos-
phorylated (12). A core prediction analysis showed thatwithin a
fewmin this statemust account for 55–80%of the total amount
of receptors (Fig. 4D). Hence, more than 55% of IR should be
found in the internalized, cytosolic compartment after insulin
stimulation. We experimentally determined the fraction of IR
that was internalized after stimulation with insulin and found

that only 2.3 � 0.8% (mean � S.E.,
n � 3 independent experiments,
subjects) of the total amount of
receptors was recovered in the
intracellular compartment. This
argues that model Mi should be
rejected.
We again validated this core pre-

diction-based rejection using a clas-
sical hypothesis testing approach;
we fitted the model to the complete
data set (standard data plus the
amount of internalization) and
found a test function value of 221,
which is way beyond the threshold
61, corresponding to the 95% �2

value for 44 degrees of freedom.
This rejection depends on our

ability to search the space of accept-
able parameters, and to further
examine also this assumption lead-
ing to the rejection, we did some
additional analytical analysis. We
showed that decreasing a parameter
at some point in a circular and
mildly nonlinear model structure
(such as Mma) eventually leads to
overshoots in the preceding states
(supplemental material, Corollary 1).
This is also accompanied by an
increase in the steady-state concen-
tration of the following state (such

as IRi inMia-c).We give analytical expressions for these depen-
dences (e.g. supplemental Equation 11). Hence, both an over-
shoot and an increased steady state are caused by the same
changes. These results underscore our numerically derived
insights and, together with our experimental data, lead to rejec-
tion of hypothesisMi.
The Final Acceptable Model, with an Internalization-depen-

dent Negative Feedback—All initially proposed hypotheses
have now been rejected (Table 2). The rejection of Mi showed
that it is not the internalization per se that generates the over-
shoot. We therefore examined a combination of Mf and Mi,
Mif, where the feedback in Mf is dependent on internalization
(Fig. 5A). This model can explain all available data for early
insulin signaling (Fig. 5, B–G), it passes a �2 test, and it is thus
our final model for the system. Note that the model includes
feedbacks from mass (internalization and recycling) and
information transfer (through signaling via intermediary X)
and that both of those feedbacks are required.
The model requires that only a small fraction of IR is inter-

nalized at steady state but also that internalization is essential
for the signaling. A core prediction analysis of the model
reveals that internalized receptors are not significantly
stronger signal generators than those at the plasma mem-
brane (i.e. the catalyzing parameters for the two pools of auto-
phosphorylated receptors are of the same order of magnitude).
Instead, the requirement for the small, internalized pool is due

FIGURE 4. Analysis of the importance of IR internalization for generation of overshoot behavior. A, time
course for phosphorylation of IRS1 in response to 10 nM insulin at 11 °C. The extent of phosphorylation is
expressed as a percentage of maximum in each experiment and presented as mean � S.E. (error bars) (n � 3,
independent experiments, subjects). B, comparison of maximum and steady-state phosphorylation of IRS1 at
11 and 37 °C. The extent of phosphorylation is expressed as a percentage of steady state at 11 °C, mean � S.E.
(error bars) (n � 5, independent experiments, subjects). C, time course for phosphorylation of IRS1 in response
to 10 nM insulin with (filled symbols) or without (open symbols) preincubation of cells with 8 mM methyl-�-
cyclodextrin for 50 min. The extent of phosphorylation is expressed as a percentage of maximum in each
experiment and presented as mean � S.E. (error bars) (n � 6, independent experiments, subjects). D, core
predictions for the model Mic regarding requirement for internalization of IR, expressed as a percentage of IR
that has to be internalized and dephosphorylated at different times after the addition of insulin.
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to rapid internalization of the autophosphorylated IR, such that
there is more phosphorylated IR in the internalized pool, com-
pared with at the plasma membrane. This prediction is consis-
tent with experimental results (6, 7). Signal overshoot behavior
is found in responses to other hormones and in other cell types
(e.g. in response to isoprenaline in adipocytes (8), epidermal
growth factor in epithelial cells (16), andHedgehog inDrosoph-
ila (17)). Our findings may therefore indicate a general mecha-
nism not restricted to insulin signaling.
We want to stress some not yet mentioned general insights

regarding the modeling framework we have developed. First, it
results in an analysis including unique predictions and rejec-
tions rather than just a final mathematical model. Second, our
approach to analysis, and hence our final model, is only con-
cerned with mechanisms that are essential to the observed

dynamics and is not attempting to generate a complete descrip-
tion of all processes that are involved. Our analysis goes beyond
such descriptive usages of modeling. Third, our parameter-free
conclusions are strong and final in that they will not be revised
in the future; a rejected model may never describe a larger data
set, and a uniquely identified property may not become non-
unique from more data. This strength and finality do not exist
with ordinary usage of models, including in some of the previ-
ous modeling works on insulin signaling (18–21) and insulin
binding (21–24). Fourth, note that all conclusions drawn in the
paper are independent of the theoretical underpinnings of our
core prediction analysis and modified optimization algorithm.
Nevertheless, because all core prediction-based rejections were
successfully validated, our work may in itself indicate the exis-
tence of such a theoretical underpinning. Fifth, we generally do

FIGURE 5. Results from simulation with the final model structure, hypothesis Mif (in red), compared with experimental data (in blue). A, outline of the
final hypothesis Mif. B, time course for IR phosphorylation in response to 100 nM insulin (mean � S.D. (error bars)). C, time course for IRS1 phosphorylation in
response to 100 nM insulin (mean � S.D. (error bars)). D, time course for phosphorylation of IRS1 in response to a two-step addition of insulin to 1.2 nM at 0 min
and 10 nM at 4 min (mean � 0.5 S.D. (error bars)). E, steady-state dose-response phosphorylation of IRS1 in response to the indicated concentration of insulin
after a 10-min incubation (mean � S.D. (error bars)). F, simulations of the amount of IR in the internalized, dephosphorylated state. G, simulations of the
behavior of IRS1 phosphorylation when internalization is blocked.
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not make claims regarding untested models, parameters, or
combinations of mechanisms. For instance, we almost exclu-
sively deal with mass action kinetics, and there might exist
modelswithmore complicated rate expressions thatwould give
a different core prediction for the same interaction graph.
Theremight also exist combinations ofmechanisms other than
our Mif hypothesis that also give acceptable behaviors with
respect to the final data set. Nevertheless, any combination of
mechanisms that does not include internalization of IR cannot
explain the data because experimental blocking of the internal-
ization showed that the overshoot then disappears. This thus
allows us to refer to internalization as “necessary.” Note that
this specific conclusion depends on the assumption that the
two types of experimental blockings (cooling and removal of
cholesterol) are specific, which is the typical limitation of purely
experimental studies. Note also that our modeling approach
can complement this weakness by adding stronger statements,
of the character “not sufficient.”
In summary, we have thus concluded that receptor internal-

ization is necessary but not sufficient for control of insulin sig-
naling and that the internalization mediates at least two funda-
mentally different types of feedbacks: via mass-transport and
via information transfer.
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