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Introduction

It is open to debate as to whether the new approaches

of systems biology are the start of a paradigm shift that

will eventually spread to all other fields of biology as

well, or whether they will stay within a subfield. With-

out a doubt, however, these approaches have now

become established alternatives within biology. This is

demonstrated, for example, by the fact that most

biological journals now are open to systems biology

studies, that several new high-impact journals are solely

devoted to such studies [1], and that much research

funding is directly targeted to systems biology [2].

Although the precise definition of systems biology is

still debated, several characteristic features are widely

acknowledged [3–5]. For example, the experimental

data should reflect the processes of the intact system

rather than that of an isolated component. Of more

focus in this minireview, however, are features related

to the interpretation of the data. Advanced data inter-

pretation is often conducted using methods inspired by

other natural sciences, such as physics and engineering,
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Systems biology and its usage of mathematical modeling to analyse biologi-

cal data is rapidly becoming an established approach to biology. A crucial

advantage of this approach is that more information can be extracted from

observations of intricate dynamics, which allows nontrivial complex expla-

nations to be evaluated and compared. In this minireview we explain this

process, and review some of the most central available analysis tools. The

focus is on the evaluation and comparison of given explanations for a

given set of experimental data and prior knowledge. Three types of meth-

ods are discussed: (a) for evaluation of whether a given model is sufficiently

able to describe the given data to be nonrejectable; (b) for evaluation of

whether a slightly superior model is significantly better; and (c) for a gen-

eral evaluation and comparison of the biologically interesting features in a

model. The most central methods are reviewed, both in terms of underlying

assumptions, including references to more advanced literature for the theo-

retically oriented reader, and in terms of practical guidelines and examples,

for the practically oriented reader. Many of the methods are based upon

analysis tools from statistics and engineering, and we emphasize that the

systems biology focus on acceptable explanations puts these methods in a

nonstandard setting. We highlight some associated future improvements

that will be essential for future developments of model based data analysis

in biology.

Abbreviations

AIC, Akaike information criterion; BIC, Bayesian information criterion; IR, insulin receptor.
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even though such methods usually need to be adopted

to the special needs of systems biology. These meth-

ods, which usually involve mathematical modeling,

allow one to focus more on the explanations deduced

from the information-rich data, rather than on the

data itself.

The strong focus on the nontrivially deduced expla-

nations in a systems biology study is in close agree-

ment with the general principles of scientific

epistemology. However, as we will argue in several

ways, this focus is nevertheless a feature that distin-

guishes systems biology from both more conventional

biological studies and from typical hypothesis testing

studies originating in statistics and engineering.

The general principles of scientific epistemology have

been eloquently formulated by Popper and followers

[6–8]. Importantly, as pointed out by Deutsch, Pop-

per’s principle of argument has replaced the need for a

principle of induction [8]. Basically, the principle of

argument means that one seeks the ’best’ explanation

for the currently available observations, even though it

is also central that explanations can never be proved,

but only rejected. The problem of evaluating and com-

paring two or several explanations for a given set of

data and prior knowledge, so as to identify the best

available explanation(s), is the focus of this mini-

review.

The basic principles of Popper et al. are more or less

followed also in conventional biological studies. Never-

theless, in a systems biology study, more effort is

devoted to the analysis of competing nontrivial expla-

nations, based on information that is not immediately

apparent from the data. For example, in the evaluation

of the importance of re-cycling of STAT5 [9–11], a pri-

mary argument for the importance of this recycling

was based on a model based analysis of the informa-

tion contained in the complex time-traces of phosphor-

ylated and total STAT5 in the cytosol. A more

conventional biological approach to the same problem

would be to block the recycling experimentally and

compare the strength of the response before and after

the blocking [9]. Generally, one could say that a con-

ventional biological study typically seeks to find an

experimental technique that directly examines the dif-

ferences between two competing explanations, but that

a systems biology study may distinguish between the

two explanations without such direct experimental

tests, using mathematical modeling. In other words,

the emphasis in systems biology is on the explanations

rather than on the available experimental techniques

and the data themselves.

Similarly, even though the methods for hypothesis

testing in statistics are based on the principles of

Popper et al., it could be argued that systems biology

focuses even more on the explanations per se. As we

review below, statistical testing is primarily oriented

around the ability of an explanation to make predic-

tions, and the central questions concern those expla-

nations that would be expected to give the best

prediction in a future test experiment. In a systems

biology study, on the other hand, the best explanation

should also fulfil a number of other criteria. In partic-

ular, the explanation should be based on the biological

understanding for the system, and all its deduced fea-

tures should be as realistic as possible, given what is

known about the system from other sources than those

included in the given data sets. In other words, the

structure of the model should somehow reflect the

underlying mechanisms in the biological system. We

denote such a model a mechanistic model. Neverthe-

less, the theories and methods from statistics are very

useful also in a systems biology context because they

directly fit into the framework of mathematical model-

ing, which is the framework in which competing expla-

nations typically are evaluated.

The most central question in this minireview is

therefore ‘What is the best explanation(s) to the given

data and prior knowledge?’. We suggest and discuss

methods for analysing this question through a number

of related sub-problems. Possible results from these

methods are outlined in Fig. 1. We start off by review-

ing how a potential explanation (i.e. a hypothesis) can

be reformulated into one or several mathematical mod-

els. Then we review methods from statistical testing

that examine whether a single model can be rejected

based on a lack of agreement with the available data

alone. After that, we review methods for comparison

of the predictive ability of two models, and finally sug-

gest a scheme for the general comparison of two or

more models. In the subsequent sections (‘Rejections

Experimental 
data 

Suggested 
explanations 

Methods
considered in

this minireview
Prior 

knowledge 
Core predictions 

explanations:
Evaluated

Rejections 

‘Best’ explanations

Merged or subdivided
explanations

Fig. 1. The kind of methods reviewed in the present minireview:

analysis of given explanations for a given set of experimental data

and prior knowledge.
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based on a residual analysis’ and ‘Rejection because

another model is significantly better’), which are the

most theory intensive sections, we start by giving a

short conceptual introduction that is intended for peo-

ple with less mathematical training (e.g. biologists/

experimentalists). Also, following this idea, we will

start with a short example serving as conceptual intro-

duction to the whole article.

Introductory example

The example is concerned with insulin signaling, and is

inspired by the developments in [12]. Insulin signaling

occurs via the insulin receptor (IR). The IR signaling

processes may be inspected experimentally by follow-

ing the change in concentration of phosphorylated IR

(denoted IRÆP), and a typical time-series is presented

as vertical lines (which gives one standard deviation,

with the mean in the middle) in Fig. 2. As is clear

from the figure, the degree of phosphorylation

increases rapidly upon addition of insulin (100 nm at

time zero), reaches a peak value within the first min-

ute, and then goes down again and reaches a steady-

state value after 5–10 min. This behavior is referred to

as an overshoot in the experimental data. These data

are one of the three inputs needed for the methods in

this minireview (Fig. 1).

The second input in Fig. 1 is prior knowledge. For

the IR subsystem this includes, for example, the facts

that IR is phosphorylated much more easily after

binding to insulin and that the phosphorylation and

dephosphorylation occurs in several catalysed steps. It

is also known that IR may leave the membrane and

enter the cytosol, a process known as internalization.

The internalization may also be followed by a return

to the membrane, which is known as recycling.

The final type of input in Fig. 1 concerns suggested

explanations. In systems biology, an explanation

should both be able to quantitatively describe the

experimental data, and do so in a way that does not

violate the prior knowledge (i.e. using a mechanistic

model). However, it is important to note that a mecha-

nistic model does not have to explicitly include all the

mechanisms that are known to occur. Rather, model-

ing is often used to achieve a characterization of which

of these mechanisms that are significantly active, and

independently important, and which mechanisms are

present but not significantly and/or uniquely contribut-

ing to the experimentally observed behavior. For

example, it is known that there is an ongoing internali-

zation and recycling, but it is not known whether this

is significantly active already during the first few min-

utes in response to insulin, and it is only the first few

minutes that are observed in the experimental data.

Therefore, it is interesting to consider explanations for

these data that contain recycling and then to compare

these with corresponding explanations that do not

include recycling. Examples of two such alternative

suggested explanations are given in Fig. 3.
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Fig. 2. Experimental data and simulations corresponding to the

introductory example. This minireview deals with methods for a

systematic comparisons between such experimental and simulated

data series. The result of these methods is an evaluation and com-

parison of the corresponding explanations. Importantly, this allows

for mechanistic insights to be drawn from such experimental data

that would not be obtained without modeling.

Fig. 3. To the right, two of the models for the insulin signaling

example in the introductory example are depicted. The top one

includes both internalization and recycling after dephosphorylation,

but not the lower one. The figure to the left corresponds to a dis-

cussion on core predictions in the section ‘A general scheme for

comparison between two models’. It depicts a model with internali-

zation and recycling, where the core prediction shows that the

recycling must have a high (nonzero) rate; this of course corre-

sponds to the rejection conclusion to the right. x1 and x2 corre-

sponds to unphosphorylated and phosphorylated IR, respectively,

and x3 and x4 corresponds to internalized phosphorylated and

dephosphorylated IR, respectively.
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With all inputs established, the methods in this

review can be applied to achieve the outputs displayed

in Fig. 1. The first step is to translate the graphical

drawings in Fig. 3 to a mathematical model (‘Refor-

mulation of a hypothesis into a mathematical model’).

This is the step that allows for a systematic, quantita-

tive, and automatic analysis of many of the properties

that are implied by a suggested explanation. The sec-

ond step (‘Rejection because another model is signifi-

cantly better’) evaluates whether the resulting models

are able to describe the experimental observations in a

satisfactory manner. This is typically carried out by

evaluating the differences between the model predic-

tions and the experimental data for all time-points

(referred to as the residuals) and there are several

alternatives for doing this. For the present example,

such an analysis shows that the given explanation with

both internalization and recycling cannot be rejected

(Fig. 2, red, dash-dotted line). The analysis also shows

that sub-explanations lacking the internalization can

not display the overshoot at all (green, dashed), and

that the resulting model with internalization but with-

out recycling can not display an overshoot with a suffi-

ciently similar shape (blue, solid) [12]. Nevertheless,

the hypothesis with internalization but without recy-

cling is not completely off, and is therefore interesting

for an alternative type of analysis as well (‘Rejection

because another model is significantly better’). This

type of analysis analyses whether the slightly better

model (here, the one with both internalization and

recycling) is significantly better than a worse one (here,

the one without recycling). The final step analyses the

surviving explanations, and decides how to present to

results. This step is presented in the penultimate sec-

tion (‘A general scheme for comparison between two

models’), which also includes a deeper discussion of

how the methods in this minireview can be combined.

Reformulation of a hypothesis into
a mathematical model

As mentioned in the Introduction, the main focus of

this article is to evaluate competing explanations for a

given data set and prior knowledge. We will now

introduce the basic notation for this data set, and for

the mathematical formulation of the potential explana-

tion. The most important notation has been standard-

ized in this and the two accompanying reviews, and is

summarized in Table 1.

The data set consists of data points, which are dis-

tinguished according to the following notation:

yiðtjÞ ð1Þ

where tj is the time the data point was collected, and i

is the index vector specifying the other details of the

measurement. This index vector could for example

Table 1. Overview of mathematical symbols that are shared in all three minireviews [present review, 17, 56].

Meaning Symbol Comment

Dynamic state variables x Typically, x correspond to concentrations

Time dependency of state variables _x ¼ f ðx ;p;uÞ The dynamics is described via ordinary differential equations

Parameters p px and py are common subsets, and they are concerned with

the state dynamics and the measurements, respectively

Estimated parameters bp, bpx , bpy Typically generated by minimizing a cost function, V

Input function u, External perturbations on the studied system

Observational function g(x,p,u) Link in the model between dynamic states and experimental

observations

Model prediction after parameter

estimation

bg, gðx ; bp;uÞ; by
Measurements, data points y Typically, we assume that y ¼ g(x,p) + e if the model structure

and the parameters are ‘true’

Measurement noise e Typically, we assume that e ¼ y � gðx ; bp; uÞ (i.e. that there is

no noise in the dynamic equations)

Noise standard deviation r The variance is denoted by r2

Residual e Typically, e ¼ y � gðx ; bp; uÞ
Model structure M
Time t

Total number of measurements N

Cost functions V This represents the total difference between the model

predictions and the data + prior knowledge

Statistical expectation Æ. . .æ, E(Æ) Expected value for random variables

Model based evaluation in systems biology G. Cedersund and J. Roll
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contain information about which signal (e.g. concen-

tration of a certain substance) that has been measured,

which experiment the measurement refers to, or which

subset of data (e.g. estimation or validation data) that

the measurement point belongs to. In many cases,

some indexes will be superfluous and dropped, simpli-

fying the notation y(t). The N data points are col-

lected in the time series vector ZN. Finally, it should

be noted that some traditions uses the concept ‘data

point’ to denote all the data that have been collected

at a certain time point [13].

Now consider a potential explanation for this data

set. Let the explanation be denoted M. We will some-

times refer to such a ‘potential explanation’ as a

‘hypothesis’. These two expressions can be used inter-

changeably, but the first option will often be preferred

because it highlights the fact that a successful hypo-

thesis must not only be able to mimic the data, but

also be able to provide a biologically plausible expla-

nation with respect to the prior knowledge about the

system. A potential explanation M must also be able

to produce predicted data points corresponding to the

experimental data points in ZN. Note that this is a

requirement that typically is not fulfilled by a conven-

tional biological explanation, which often is comprises

verbal arguments, or nonquantitative interaction maps,

etc. A predicted data point corresponding to (1) and

the hypothesisM will be denoted:

byMi ðtj; pÞ ð2Þ

where the symbol p denotes the parameter vector.

Generally, a model structure is a mapping from a

parameter set to a unique model (i.e. to a unique way

of predicting outputs). A hypothesis M that fulfils (2)

is therefore associated with a model structure, which

also will be denoted M. A specific model will be

denotedM(p).

The problem of formulating a mathematical model

structure from a potential biological explanation has

been treated in many text books [4,14], and will not be

discussed in depth here. All the examples we consider

below will be dynamic, where the model structure will

be in the form of a continuous-time deterministic

state-space model:

_x ¼ f ðx; p; uÞ ð3aÞ

by ¼ gðx; p; uÞ ð3bÞ

xð0Þ ¼ x0 ð3cÞ

where x is the n-dimensional state vector (often corre-

sponding to concentrations), _x is the time-derivative of

this vector, x(t) is the state at time t, and f and g are

vectors of smooth nonlinear functions. The symbol u

denotes the external input to the system. The inputs

may be time-varying, and can for example correspond

to a ligand concentration. Note that the inputs are,

just like the parameters, not themselves effected by the

dynamic equations. Note also that the parts of the

potential explanation that refer to the biological mech-

anisms are contained in f, and that the parts that refer

to the measurement process are contained in g. Note,

finally, that the parameter vector x0 is a part of the

parameter vector p.

Finally, one important variation is the replacement

of time-variation for steady state. There is no major

difference between these cases. This can be under-

stood by choosing time-points for ti that are so large

that the transients have passed. Therefore, almost

all results and methods presented in this minireview

are applicable to steady-state data and models as

well.

Rejections based on a residual analysis

Conceptual introduction

We now turn to the problem of evaluating a single

hypothesisM with respect to the given data ZN. From

the introduction of M above, an obviously important

entity to consider for the evaluation ofM is the differ-

ence between the measured and predicted data points.

We denote such a difference e:

eMðt; pÞ :¼ yðtÞ � byMðt; pÞ
and it is referred to as a residual. Residuals are

depicted in Fig. 4. If the residuals are large, and espe-

cially if they are large compared to the uncertainty in

the data, the model does not provide a good explana-

tion for the data. The size of the residuals is tested in

a v2 test, which is presented in a subsequent section.

Likewise, if a large majority of the residuals are similar

to their neighbours (e.g. if the simulations lie on the

same side of the experimental data for large parts of

the data set), the model does not explain the data in

an optimal way. This latter property is tested by meth-

ods given in a subsequent section. The difference

between the two types of tests is illustrated in Fig. 4.

Tests such as the v2 test, which analyses the size of the

residuals, would typically accept the right part of the

data series, but reject the left one, and correlation-

based methods such as the whiteness or run test,

would typically reject the left part, but accept that to

the right.

G. Cedersund and J. Roll Model based evaluation in systems biology
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The null hypothesis: that the tested model

is the ‘true’ model

We now turn to a more formal treatment of the sub-

ject. A common assumption in theoretical derivations

[13] is that the data has been generated by a system

that behaves like the chosen model structure for some

parameter, p0, and for some realization of the noise

e(t):

yðtiÞ ¼ byMðti; p
0Þ þ eðtiÞ 8i 2 ½1;N� ð4Þ

If the e(t)s are independent, they are sometimes also

referred to as the innovations because they constitute

the part of the system that never can be predicted from

past data. It should also be noted that the noise here

is assumed to be additive, and only affects the mea-

surements. In reality, noise will also appear in the

underlying dynamics, but adding noise to the differen-

tial equations is still unusual in systems biology.

The assumption of Eqn (4) can also be tested.

According to the standard traditions of testing, how-

ever, one cannot prove that this, or any, hypothesis is

correct, but only examine whether the hypothesis can

be rejected [6,15]. In a statistical testing setting, a null

hypothesis is formulated. This null hypothesis corre-

sponds to the tested property being true. The null

hypothesis is also associated with a test entity, T . The
value of T depends on the data ZN. If this value is

above a certain threshold, dT , the null hypothesis is

rejected, with a given significance ad [15]. Such a rejec-

tion is a strong statement because it means that the

tested property with large probability does not hold,

which in this particular case means that the tested

hypothesisM is unable to provide a satisfactory expla-

nation for the data. On the other hand, if T < dT ,
one simply says that the test was unable to reject the

potential explanation from the given data, which is a

much weaker statement. In particular, one does not

claim that failure to reject the null hypothesis means

that it is true, (i.e. that M is the best, or correct,

explanation). Nevertheless, passing such a test is a

positive indication of the quality of the model.

Identification of bp
Below, we introduce the probably two most common

ways for testing Eqn (4): a v2 test and a whiteness test.

Both of these two tests evaluate the model structure

M at a particular parameter point, bp. This parameter

point corresponds to the best possible agreement

between the model and the part of the data set chosen

for estimation, ZN
est, according to some cost function V,

which measures the agreement between the model out-

put and the measurements. The bp vector thus serves as

an approximation of p0. A common choice of cost

function is the sum of the squares of the residuals,

typically weighted with the variance of the experimen-

tal noise, r2. This choice is motivated by its equi-

valence to the method of maximum likelihood

[if e(t) 2 N(0,r2(t))], which has minimum variance to a

unbiased parameter estimate and many other sound

properties [13]. The likelihood function is very central

in statistical testing; it is denoted L, and gives a mea-

sure of the likelihood (probability) that the given data

set should be generated by a given modelM(p).

Another important concept regarding parameter

estimation is known as regularization [15]. Regulariza-

tion is applicable (e.g. if one has prior knowledge

about certain parameter values), but can also be used

Residual

Small but correlated residuals

Uncorrelated but large residuals

Simulations

Data points

Fig. 4. Two sections of experimental data series and simulations. The data points y are shown with one standard deviation. As can be seen

on the left, the simulations lie outside the uncertainty in the data for all data points. Nevertheless, they lie on both sides of the simulation

curve, and with no obvious correlation. Conversely, the second part of the data series shows a close agreement between the data and simu-

lations, but all data points lie on the same side of the simulations. Typically, situations like that on the left are rejected by a v2 test but pass

a whiteness test, and situations such as that on the right pass a v2 test but would be rejected by a whiteness test.
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as a way of controlling the flexibility of the model.

Certain regularization methods [15,16] can also be used

for regressor selection. The main idea of regularization

is to add an extra term to the cost function, which

penalizes deviations of the parameters from some given

nominal values. Together with a quadratic norm cost

function, the estimation criterion takes the form:

bp :¼ arg min VðpÞ ð5Þ

VðpÞ :¼ 1

N

X
i2ZN

est

X
j

ðyiðtjÞ�byM
i ðtjÞÞ2

r2
i ðtjÞ

þ
X

k

akhpenðpk�p
g
kÞ

ð6Þ

Here, p
g
k is the nominal value of pk, and hpen(Æ) is a

suitable penalizing function [e.g., hpen(p) ¼ p2 (ridge

regression) or hpen(p) ¼ |p|] and the aks are the weights

to the different regularization terms. Further informa-

tion about the identification process is included in a

separate review in this minireview series [17].

Testing the size of the residuals: the v2 test:

With all the notations in place, Eqn (4) together with

the hypothesis that p0 ¼ bp can be re-stated as:

eMðtj;bpÞ follows the same distribution as eðtjÞ 8t 2 ½1;N�
ð7Þ

which is a common null hypothesis. The most obvious

thing one can do to evaluate the residuals is to plot

them and to calculate some general statistical proper-

ties, such as maximum and mean values, etc. This will

give an important intuitive feeling for the quality of

the model, and for whether it is reasonable to expect

that Eqn (7) will hold, and that M is a nonrejectable

explanation for the data. However, for given assump-

tions of the statistical properties of the experimental

noise e(t), it is also possible to construct more formal

statistical tests. The easiest case is the assumption of

independent, identically distributed noise terms follow-

ing a zero mean normal distribution, e(t) 2 N(0,r2(t)).
Then, the null hypothesis implies that each term

ðyðtÞ�byðt;pÞÞ=rðtÞ follows a standard normal distribu-

tion, N(0,1), and this in turn means that the first sum

in Eqn (6) should follow a v2 distribution [18]; this

sum is therefore a suitable test function:

Tv2 ¼
X

i;j

ðyiðtjÞ � byM
i ðtjÞÞ2

r2
i ðtjÞ

2 v2ðdÞ ð8Þ

and it is commonly referred to as the v2 test. The

symbol d denotes the degrees of freedom for the v2

distribution, and this number deserves some special

attention. In case the test is performed on independent

validation data, the residuals should be truly inde-

pendent, and d is equal to Nval, the number of data

points in the validation data set, ZN

val
[19,20]. Then the

number d is known without approximation.

A common situation, however, is that one does not

have enough data points to save a separate data set

for validation (i.e. that both the parameter estimation

and the test are performed on the same set of data,

ZN). Then one might have the problem of over-fitting.

For example, consider a flexible model structure that

potentially could have e ¼ 0 for all data points in the

estimation data. For such a model structure, Tv2 could

consequently go to zero, even though the chosen

model might behave very poorly on another data set.

This is the problem of over-fitting, and it is discussed

further later in this minireview. In this case, the resi-

duals cannot be assumed to be independent. In sum-

mary, this means that if ZN
test ¼ ZN

est, one should

replace the null hypothesis of Eqn (7) by Eqn (4), and

find a distribution other than v2(Nval) for the v2 test if

Eqn (8).

If the model structure is linear in the parameters,

and all parameters are identifiable, each parameter that

has been fitted to the data can be used to eliminate

one term in Eqn (8), i.e. one term [e.g.

ðy1ðt4Þ � by1ðt4ÞÞ2=r2
1ðt4Þ] can be expressed using the

other terms and the parameters. When all parameters

have been used up, the remaining terms are again nor-

mally distributed and independent. This means that

the degrees of freedom can then be chosen as:

d ¼ N � r where r ¼ dimðpÞ ð9Þ

This result is exact and holds, at least locally, also for

systems that are nonlinear in the parameters, such as

Eqn (3) [19,20]. Note that this compensation with r is

performed for the same reason as why the calculation

of variance from a data series has a minus one in the

denominator, if the mean value has been calculated

from the data series as well.

However, Eqn (9) does not hold for unidentifiable

systems (i.e. where the data is not sufficient to

uniquely estimate all parameters). This is especially the

case if some parameters are structurally unidentifiable

[i.e. if they can analytically be expressed as a function

of the other parameters without any approximation of

the predicted outputs byðt; pÞ]. The number of para-

meters that is superfluous in this way is referred to as

the transcendence degree [21]. We denote the transcen-

dence degree by tM, which should not be confused

with the index notation on the time-vector. With this
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notation, we can write a more generally applicable

formula for d as:

d ¼ N � ðr � tMÞ ð10Þ

This compensation for structural unidentifiability

should always be carried out, and is not a matter of

design of the test. However, when considering practi-

cal identifiability, the situation is more ambiguous

[19,20]. Practical identifiability is a term used for

example by Dochain and Vanrolleghem [22], and it is

concerned with whether parameters can be identified

with an acceptable uncertainty from the specific given

data set, given its noise level and limited number of

data points, etc. Practical unidentifiability is very

common for systems biology problems; this means

that there typically are many parameters that do not

uniquely contribute to the estimation process, even

after eliminating the structurally unidentifiable para-

meters. If this problem leads to a large discrepancy

between the number of practically identifiable para-

meters and r)tM, and especially if N)(r)tM) is approx-

imately equal to the number of data points, Eqn (10)

in Eqn (8) results in an unnecessarily difficult test to

pass. A more fair test would then include a compen-

sation of the number of practically identifiable

parameters (i.e. the effective number of parameters,

AM). One way to estimate this number is through the

following expression [15]:

AM ¼
X

k

kk

kk þ ak
ð11Þ

where ki is the ith eigenvalue to the Hessian of the cost

function, and where the ais are the regularization

weights for ridge regression, or some otherwise chosen

cut-off values. The best expression for d in Eqn (8)

applied to a systems biology model, where ZN

val
¼ ZN

est,

is thus probably given by:

d ¼ N � AM ð12Þ

Note, however, that this final suggestion is not exact,

and includes the design variables ak.

Example 1

To illustrate the various choices of d, and especially to

illustrate the potential danger of only considering

structural unidentifiability, we first consider the simple,

but somewhat artificial, model structure in Fig. 5.

Assuming mass action kinetics, and that all the initial

mass is in states x1 and x2,1, the corresponding set of

differential equations are:

_x1 ¼ �k1x1 þ 0:001x2;1 ð13aÞ

_x2;1 ¼ �k2x2;1 þ kmþ1x2;m � 0:001x2;1 ð13bÞ

_x2;2 ¼ �k3x2;2 þ k2x2;1 ð13cÞ

..

.

_x2;m ¼ �kmþ1x2;m þ kmx2;ðm�1Þ ð13dÞ

y ¼ x1 ð13eÞ

xð0Þ ¼ ð10; 10; 0; 0; . . .Þ ð13fÞ

Here m is a positive integer, determining the size of

the x2 subsystem. This means that m also determines

the number of parameters, and thus, in some ways, the

complexity of the model structure. Note, however, that

the x2 subsystem only exerts a very small effect on the

x1 dynamics, which is the only measurable state.

Let us now consider the result of estimating and

evaluating this model structure with respect to the data

in Fig. 6. The results are given in Table 2 for the

different options of calculating d. The details of the

calculations are given in the MATLAB-file Exam-

ple1.m, except for the calculations of the transcendence

degree which are given in the Maple file Example1.mw,

using the Sedoglavic’ algorithm [21] (see Doc. S1). In

the example, the data have been generated by the

tested model structure, which means that the model

should pass the test. However, when calculating d

according to Eqn (9) or Eqn (10), the test erroneously

rejects the model structure, and does so with a high

significance. This follows from the fact that all para-

meters in the x2 subsystem are practically unidentifi-

able, even though they are structurally identifiable

(tM ¼ 0), and the fact that the r)tM is approximately

equal to the number of data points N.

Fig. 5. The model structure examined in Example 1. The key prop-

erty of this system is that all parameters are structurally identifiable

(after fixing one of them to a specific value), but that only one

parameter, k1, is practically identifiable.
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In this example, it is straightforward to see that the

parameters in the x2 subsystem have no effect on the

observed dynamics, and thus are practically unidentifi-

able; it is apparent from the factor 0.001 in Eqn (13a).

However, the situation highlighted by this example is

common. As another example one could consider the

models of Teusink et al. [23] or Hynne et al. [24] for

yeast glycolysis. They are both of a high structural

identifiability (tM < 10), even when only a few states

can be observed, but have many parameters (r > 50)

and only a handful of them are practically identifiable

with respect to the available in vivo measurements of

the metabolites [25,26]. Therefore, if one does not have

access to a large number of data points (especially if

N < 50), a v2 test would be impossible to pass, using

d ¼ N)(r)tM), even for the ‘true’ model. Note, how-

ever, that this problem disappears when N is large

compared to r)tM.

Testing the correlation between the residuals

Although the v2 test of Eqn (8) is justified by an

assumption of independence of the residuals, it primar-

ily tests the size of the residuals. We will now look at

two other tests that more directly examine the correla-

tion between the residuals.

The first test is referred to as the run test. The num-

ber of runs Ru is defined as the number of sign changes

in the sequence of residuals, and it is compared to the

expected number of runs, N/2 (because it is assumed

that the mean of the uncorrelated Gaussian noise is

equal to zero) [22]. An assessment of the significance

of the deviation from this number is given by a com-

parison of:

Ru � N=2ffiffiffiffiffiffiffiffiffi
N=2

p
and the cumulative N(0, 1) distribution for large N

and a cumulative binomial distribution for small N

[22].

The second test is referred to as a whiteness test. Its

null hypothesis is that the residuals are uncorrelated.

The test is therefore based on the correlation coeffi-

cients R(s), which are defined as:

RiðsÞ :¼ 1

Ni

XNi

j¼1

eiðtjÞeiðtj�sÞ

where Ni is the number of data points with index i.

Using these coefficients, one may now test the null

hypothesis by testing whether the test function T white

follows a v2 distribution [22]:

Twhite :¼ N

Rð0Þ2
XM
s¼1

RðsÞ2 2 v2ðMÞ

Rejection because another model
is significantly better

Conceptual introduction

In the previous section, we looked at tests for a single

model. These tests can of course be applied to several

competing models as well. Because models will typi-

cally result in different test values, these already men-

tioned test functions can in principle be used to

compare models. However, it would then not be

known whether a model with a lower test value is sig-

nificantly better, or whether the difference lies within

the difference in test values that would be expected to

occur also for equally good models. We will now

review some other statistical tests that are especially

developed for the model comparison problem.

As demonstrated above, the sum of the normalized

residuals can be expected to follow a v2 distribution.

0 1 2 3 4 5
−2

0

2

4

6

8

10

Time

y

Experimental data
Model fit

Fig. 6. The data used in Example 1. The whole data set is used for

both estimation and validation/testing.

Table 2. The values from Example 1 illustrating the importance of

choosing an appropriate d in Eqn (8).

d-formula N m d value dv2(95%) T Pass?

N 13 11 13 22.36 8.15 Yes

N ) r 13 11 1 3.84 8.15 No

N ) (r ) tM) 13 11 1 3.84 8.15 No

N ) AM 13 11 12 21.02 8.15 Yes
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This insight lead to a very straightforward v2 test,

which simply compares the calculated sum with the

threshold value for the appropriate distribution. This

is easy because the distribution is known analytically.

A similar distribution has been derived for the differ-

ence between the sums of two such models. It also fol-

lows a v2 distribution. A very straightforward test is

therefore to simply calculate this difference, and com-

pare it with an appropriate v2 distribution. This is the

basis behind the likelihood ratio test described below.

However, in the derivation of the likelihood ratio

test, a number of conditions are assumed, and these

conditions are typically not fulfilled. Therefore, a

so-called bootstrap-based approach is advisable, even

though it is much more computationally expensive.

The basic principle behind this approach is depicted in

Fig. 7. Here, each green circle corresponds to the cost

(i.e. sum of residuals) for both the models, when the

data have been generated under the assumption that

model 1 is correct, and when both models have been

fitted to each generated data set. Likewise, the blue Xs

corresponds to the costs for both models, when the

data have been generated under the assumption that

model 2 is correct. As would be expected, model 1 is

always fitting the data well (i.e. there is a low cost)

when model 1 has generated the data, but model 2 is

less good at fitting to these data, and vice versa. Now,

given these green and blue symbols, the following four

situations can be distinguished for evaluation of the

model costs for the true data (depicted as a red

square). If the square ends up in the upper right cor-

ner, none of the models appear to be able to describe

the data in an acceptable manner, and both models

should be rejected. If the square ends up in the lower

right or upper left corner, model 1 or model 2 can be

rejected, respectively. Finally, if the red square ends up

in the lower left corner, none of the models can be

rejected. In Fig. 7, these four scenarios can be distin-

guished by eye but, for the general case, it might be

good to formalize these decisions using statistical mea-

sures. This is the conceptual motivation for developing

the approaches below, and especially the bootstrap

approach described in a later section.

The classical objective of statistical testing:

minimization of the test error

Let us now turn to a more formal treatment of the

subject of model comparison. The central property in

statistical testing is the test error, Err. This is the

expected deviation between the model and a com-

pletely new set of data, referred to as test data [15].

Ideally, one would therefore divide the data set into

three separate parts: estimation data, validation data

and test data (Fig. 8). Note that the test data are differ-

ent from the validation data (strictly this only means

that the data points are different, but the more funda-

mental and large these differences are, the stronger the

effect of the subdivision). The reason for this additional

subdivision is that the validation data might have been

used as a part of the model selection process. In statisti-

cal testing, it is not uncommon to compare a large

number of different models with respect to the same

validation data, where all models have been estimated

to the same estimation data. In such a case, it is

apparent that VðZN

val
Þcan be expected to be an under-

estimation of the desired Err ¼ EðVðZN
testÞÞ, where E is

the expectation operator. However, the same problem

is to some extent also present if only two models are

compared in this way.

Quite often, however, one does not have enough

data to make such a sub-division. Then the test error

Err has to be estimated in some other way, quite often

based on the estimation data alone. In that case, it is
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Fig. 7. The conceptual idea behind many model comparison

approaches, especially those in the sections ‘The F and the likeli-

hood ratio test’ and ‘Bootstrap solutions’. The green circles corre-

spond to the distribution under the hypothesis that model 1 is true,

and the blue Xs correspond to the corresponding distribution under

the hypothesis that model 2 is correct. The red squares correspond

to the cost for four different scenarios, rejecting one, both, or none

of the models. Adapted from Hinde [44].

Estimation Validation Test

Fig. 8. Ideally, one should divide the given data set, ZN, in three

parts: one part Z N
est for estimation, one part Z N

val for validation, and

one part Z N
test for testing.
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even more important that one does not equate Err

with VðZNÞ ¼ VðZN
estÞ, due to the problem of over-fit-

ting. Over-fitting is most common when using highly

flexible model structures because, in principle, they can

give VðZN
estÞ ¼ 0 but still have a very large true Err.

Because flexibility usually increases upon increasing

model complexity, over-fitting is therefore also a prob-

lem of model selection.

One can also explain the problem of over-fitting by

studying the trade-off between variance and bias. Then

the test error is subdivided in its components [15]:

Err ¼ Errirr þ Errbias þ Errvar ð14Þ

In this equation, Errirr denotes the irreducible part of

the test error (i.e. the part that is due to the innovation

component in the test data, ZN
test). Thus, if yi(tj) ¼

yi(tj,p
0)+ei(tj), where the ei(tj) are uncorrelated with

zero mean and standard deviation ri(tj), we have:

Errirr ¼
1

N

X
i;j

riðtjÞ2: ð15Þ

and where the sum is taken over all i,j such that

yi(tj) 2 ZN test. The second term, Errbias, is the square

of the bias of the error (i.e. the square of the average

difference between our estimated predictions and the

true measurements). Expressed more formally, using

the same assumptions as for Eqn (15), we have:

Errbias ¼
1

N

X
yiðtjÞ2ZN

test

½Ebyiðtj;bpÞ � yiðtj; p
0Þ� � ½Ebyiðtj;bpÞ � yiðtj; p

0Þ�
� �

The third term, Errvar, is the variance estimated predic-

tions (i.e. a measure of how much the predictions

would vary if the estimation data were collected

again). Expressed more formally, with the same

assumptions as for Eqn (15), we have:

Errvar¼

E
1

N

X
yiðtjÞ2ZN

test

ð½byiðtj;bpÞ�Eðbyiðtj;bpÞÞ��½byiðtj;bpÞ�Eðbyiðtj;bpÞÞ�Þ
0
@

1
A

The important thing with respect to the subdivision of

Eqn (14) is the dependency of the three terms Errirr,

Errbias and Errvar on the complexity of the model. Typi-

cally, Errbias decreases monotonously with model com-

plexity, whereas Errvar increases with model complexity.

Consequently, there is a model complexity where Err is

minimal, even though the model agreement increases

with increasing complexity; this insight is the other way

of motivating the over-fitting problem.

There are two final concepts from the statistical test-

ing tradition that need to be mentioned. The first is

the concept of nested models. Two models, M1 and

M2, are nested if one can be obtained as a special case

of another. This can be written as M1�M2 or

M2�M1, if M1 or M2 is the smaller model, respec-

tively, and typically the dependency can be formulated

as a constraint on the parameters, which always is ful-

filled for M1, but not necessarily for M2. For exam-

ple, M1 could correspond to a model with a specific

reaction described through an irreversible reaction,

which, in M2, is described through reversible kinetics

(all other parts are equal). Another example of nested

models is given by the upper right and lower right

model structures in Fig. 3. Most of the derivations

for model comparison in the statistical testing tradition

are derived for the case of nested models.

The other concept is referred to as in-sample error.

This is the error Err for the special case of the test

data being collected using the exact same ‘external

conditions’ as for the estimation data. Specifically, this

means that the data are collected at the same time-

points, and that the controlled perturbations of the

systems are performed in an identical manner [15]. The

in-sample error is a convenient measure for model

comparison, even though it is the extra-sample error

that describes the future usage of the model in most

cases. It is therefore common that one calculates the

in-sample error, and uses this to approximate Err on a

generic data set. This is the case, for instance, for the

Akaike information criterion (AIC).

AIC and Bayesian information criterion (BIC) tests

There are many approaches to compare two or more

models, with the attempt to identify the model that

has the smallest expected test error Err. The perhaps

most well-known of these methods is due to Akaike

[27,28], and is often based on the following function:

AIC ¼ VðbpÞ þ r2 2dp

N
ð16Þ

where V is the quadratic norm cost function, r2 is the

variance of the experimental noise, and where N is the

number data points used for the test. The final symbol,

dp, represents model complexity, and, in the simplest

cases, can be given by the dim (p) directly, but, for

the more general case (nonlinear models, minimization

using more regularization, unidentifiable systems, etc.),

dp should be replaced by some measure of the effective

number of parameters, Ap; Eqn (11). Interestingly, the

first term in Eqn (16) represents the cost function in

the in-sample test error, Errb, and the second term is
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referred to as the optimism, which thus represents the

difference between the true in-sample test error and

the cost function. It is important to note that there are

several variations of AIC; for example, see the accom-

panying minireview on experimental design [56], and

see also Doc. S2, specifying the relation between these

expression.

A similar test entity, but that is derived in a Bayes-

ian framework, is the [13]:

BIC ¼ VðbpÞ þ logðNÞ
N

dp ð17Þ

where the same notations are used as for AIC.

For both AIC and BIC, the model with the lowest

criterion value is the chosen model because this is the

model that is expected to give the lowest test error.

There is no guarantee that AIC and BIC will prefer

the same model, and for N > 7, AIC has a bias

towards more complex model structures [15].

The F and the likelihood ratio test

There exists many other tests similar to AIC and BIC,

using more or less related test expressions. Some

important examples include the minimum description

length, Vapnik–Chervonenkis dimension, the final pre-

diction error, and the general information criterion

[15,22]. A shared problem among all these tests, how-

ever, is that they will only choose one single model as

the preferred one, even though the compared models

might perform similarly for all practical purposes (i.e.

even though the difference between the models is insig-

nificant). That means that these methods are primarily

useful if one simply needs a single model to make a

prediction, as in an engineering problem.

A test that does attach a significance to its choices is

the likelihood ratio test. The test function, T lr, and the

corresponding distribution under standard conditions

is given by:

T lr ¼ 2ðl1 � l2Þ 2 v2ðd1 � d2Þ ð18Þ

where li is the logarithm of the likelihood function for

model MiðbpiÞ, and where di is given by dim(pi))tMi

for i ¼ 1,2.

The standard conditions for the likelihood ratio test

are rather general, at least compared to the T v2 test.

The two most severe assumptions are that the models

are assumed to be nested and that N, the number of

data points, is assumed to be large [29–31]. If these

two assumptions are fulfilled, the remaining assump-

tions are probably nonproblematic. For example it is,

assumed that the estimated parameters follow a Gaus-

sian uncertainty distribution, and this holds asymptoti-

cally for all likelihood minimizations under very

general constraints (i.e. for sufficiently large N) [32].

Note that it is not necessary the measurement noise to

be normally distributed or white, or that for the likeli-

hood function to be given by any specific type of

expression.

Despite this generality, the assumptions are still typi-

cally not fulfilled. For example, an estimated para-

meter might lie close to a boundary (i.e. 0), and thus

making the distribution non-Gaussian. For this viola-

tion, if the other assumptions still are fulfilled, one

may still obtain an analytical expression for the distri-

bution, which is then given by a linear combination of

other v2 expressions. The specific linear combination

for a given problem is derived using the geometrical

arguments developed previously [33,34]. A more severe

problem than the possible vicinity to boundaries is the

fact that the number of data points often is limited.

This means that practical identifiability becomes a real

problem [i.e. that di typically is lower than dim

(pi))tMi
], and that the parameter distributions no

longer are Gaussian. Furthermore, it is not uncommon

that the tested model structures are non-nested. This

problem was first considered by Cox [35,36] who

obtained some asymptotic results, which have been

developed further [31]. For the general situation of

limited data, the likelihood ratio test function, T lr,

may still be used, but the distribution to which it

should be compared is no longer possible to obtain

analytically. It may, however, be obtained using simu-

lation based approaches such as bootstrapping, which

we describe below.

Another important test that should be mentioned is

the F-test. It also provides a significance to its compar-

ison, and the test and the corresponding distribution

are given by [13,22]:

T F ¼
Vðbp1Þ � Vðbp2Þ

Vðbp2Þ
N � d2

d2 � d1
2 FN�d1;d2�d1

ð19Þ

where F is the F-distribution, and the indices specify

the degrees of freedom. The test is asymptotically

equal to the likelihood ratio test, but has been shown

to have less power for fewer data points [37].

Bootstrap solutions

Bootstrapping is a general method to estimate the

distribution of almost any property that has been

estimated from experimental data. Historically, simu-

lation-based precursors to bootstrapping have had

the reputation of being empirical, and nonstringent,
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compared to for example the exact analytical solu-

tions described above. However, subsequent to some

groundbreaking studies [38–40] clarifying the theoreti-

cal motivations for bootstrapping, bootstrapping has

been considered as another mathematically valid

approach to statistical problems. Actually, as is clear

from the comments in the previous sections, the com-

monly used analytical solutions are also burdened

with severe problems of validity, due to underlying

assumptions that typically are not fulfilled. Bootstrap-

ping approaches may often be based on fewer such

assumptions, with the compensation of a higher com-

putational cost for calculating the sought distributions

[41].

The basic idea is to estimate the distribution of a

property h by generating new data sets bi from the

given data set ZN (Fig. 9). The most straightforward

approach to bootstrapping is probably the nonpara-

metric bootstrap, which is as resampling with replace-

ment [41]. Here, each bootstrap is solely based on

picking samples from the given data series, ZN, where

each data point is returned to the pool of data before

each new point is picked. With this procedure, and

N ¼ 5, three bootstraps could be given by:

b1 ¼ fyðt2Þ; yðt3Þ; yðt3Þ; yðt4Þ; yðt5Þg
b2 ¼ fyðt1Þ; yðt2Þ; yðt2Þ; yðt5Þ; yðt5Þg
b3 ¼ fyðt1Þ; yðt2Þ; yðt3Þ; yðt4Þ; yðt5Þg

Note that data points might appear in more than one

place in a single bootstrap; in fact, this is what allows

the bootstraps to vary.

Common in all bootstrap approaches is that each

bootstrap corresponds to a ‘new version’ of the origi-

nal time-series ZN (Fig. 9). These new versions should

share some critical properties with the original time-

series, but the bootstraps taken together should also

give a representation of variations that might occur

(e.g. if the experiment was conducted again). In the

nonparametric approach mentioned above, the shared

features are the total number and the values of the

data points themselves, and the variation is given by

the number of times the data points appear.

Another type of bootstrap is based on a model M1,

and on analysis of the corresponding residuals. In such

residual-based bootstrapping, each new bootstrap is

generated by the simulated curve, which is the best fit

of M1 and ZN, to which a new realization of the esti-

mated of the estimated noise distribution (or a resam-

pling of the residuals) is added. The noise distribution

is not necessarily estimated from the residuals eM1, but

may be estimated from the residuals of another low-

bias model, or from a part of the time-series where the

noise is believed to be the only reason for the fluctua-

tions [22]. Model-based bootstrap generation is typi-

cally referred to as a parametric bootstrap, even if

there is a gray-zone between nonparametric and para-

metric bootstraps. A general basic introduction to

bootstrap approaches is provided elsewhere [39,41,42]

and a more theoretically advanced alternative is also

available [43].

A simulation-based approach to likelihood ratio dis-

tribution estimation was first proposed by Wlliams

[38]. The proposed method for evaluating the differ-

ences between two non-nested nonlinear model struc-

tures Mf and Mg with respect to a limited data set

can essentially be summarized as [38,44]:

(a) Fit models Mf and Mg to obtain parameters bpf

and bpg , and calculate the observed likelihood ratio,

T lr, according to (18).

(b) Simulate B bootstraps based on the fitted outputsby f ðt;bp f Þ corresponding to fitted model Mf ðbp f Þ. Fit

both models to each bootstrap to obtain bp f ; fr, bp g; fr, and

calculate T �;frlr ¼ 2ðlf ðbp f ; frÞ � lgðbp g; frÞÞ; r ¼ 1; . . . ;B.

(c) Simulate B bootstraps based on the fitted outputsby gðt;bp gÞ corresponding to fitted model Mgðbp gÞ. Fit

both models to each bootstrap to obtain bp f ;gr, bp g; gr, and

calculate T �; gr
lr ¼ 2ðlf ðbp f ; grÞ � lgðbp g; grÞÞ; r ¼ 1; . . . ;B.

The value T lr is then compared with the simulated

sets of values T �;frlr and T �;gr
lr to indicate support for

one or the other of the models, inability to choose

between them, or possible evidence against both mod-

els. In practice, it is often convenient to replace the

log-likelihood function by the sum of residuals, typi-

cally normalized with the variance of the noise, and to

drop the factor 2 in all places. Finally, significance

levels can be obtained by formulae such as:

Fig. 9. Graphical depiction of the idea behind bootstrapping. First

bootstraps are generated that are similar, but not identical, to the

original data set, ZN. Then the property of interest deduced from

the data set, which we denote h(ZN), is calculated for all the boot-

straps, and the resulting set of values serves as an empirical distri-

bution with which h(ZN) can be compared.
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ba ¼ #ðT �;gr
lr < T lrÞ

B
ð20Þ

where the # symbol indicates the number of T �;gr
lr s that

fulfils the criterion T �;gr
lr < T lr. This bootstrap

approach has been described and used to some extent

in econometrics studies [45–47] and, in some modified

forms, also in bioinformatics [48,49] and a few systems

biology studies [10,11]. It should, however, be noted

that there is currently no consensus about exactly what

to use as a test function, or how to calculate the distri-

bution [10,37,50]; furthermore, the asymptotic validity

is, at least in some situations, still disputed [51].

A general scheme for comparison
between two models

Measuring the difference between two models

It might often happen that several explanations pass all

the quality tests described in the section ‘Rejections

based on a residual analysis’, and that none of these

explanations provide a significantly better predictor

than another according to the tests described in the sec-

tion ‘The F and the likelihood ratio test’. Then these

explanations can be analysed further, because other

properties of the models might lead to rejection of some

of the explanations anyway. Similarly, it is also interest-

ing to examine the models’ characteristic similarities and

differences because this will also provide crucial infor-

mation on how to relate to the remaining explanations.

The first and most straightforward option is to visu-

ally inspect the two models (e.g. by comparing the

biochemical interpretations of their interaction graphs,

or by comparing their behaviors in specific simula-

tions). Note that the studied behaviors now also can

include the response of the models to new inputs or

operating conditions, or the behavior of other states,

compared to those examined in the earlier tests.

Typically, some states or properties that have not

been measured in the given data set, ZN, are of espe-

cially large interest. Denote these output variables yo
and assume that they are given by some function h as:

yo ¼ hðx; pÞ ð21Þ

where x and p are the states and parameters specified

in Eqn (3). An obvious entity to consider is the differ-

ence between these outputs for different model struc-

tures, y1
o � y2

o , where the superscript i as usual denotes

that the model prediction corresponds to Mi. These

differences may also be mapped to a more formal

distance measure, D, between the two models; for

example, by integrating over time:

Dij ¼
Z

t

kyi
o � yj

ok ð22Þ

where k denotes some suitable norm.

Core predictions

When identifying the interesting model outputs, yo,

one should not only consider whether a particular out-

put is biologically interesting, but also the quality of

that part of the model. Ideally, the identification step

[17] should not only produce an identified parameter

set bp, but also an uncertainty in the model predictions.

Because over-parametrization and unidentifiability is

common and usually quite substantial in systems bio-

logy models, many predictions made by a systems bio-

logy model will be highly uncertain. For many

predictions, the uncertainty can be so large that almost

any value could be produced, while still allowing for a

good agreement with ZN [25]. On the other hand, there

are also model predictions that must be fulfilled if that

particular model structure is to describe the given data

set. Such uniquely identified predictions with a high

quality tag (low uncertainty) were given the name core

predictions [25] (G. Cedersund, J. Roll, T. Pettersson,

H. Tidefelt & P. Strålfors, unpublished data), and they

are obviously interesting candidates to qualify as inter-

esting model outputs yo.

Core predictions may be identified in various ways.

One way is to first determine the uncertainty of the

estimated parameters, Dbp; for example, by using the

Hessian of the cost function [22,25], or by using modifi-

cations of global searches for the optimization step [53]

(G. Cedersund, J. Roll, T. Pettersson, H. Tidefelt & P.

Strålfors, unpublished data). These uncertainty regions

in the parameter space can then be sampled, and subse-

quently simulations can be used to translate the para-

meter uncertainty to a corresponding uncertainty in

specific model predictions [25] (G. Cedersund, J. Roll,

T. Pettersson, H. Tidefelt & P. Strålfors, unpublished

data). The model predictions that are highly similar for

all sampled parameter values could be taken as core pre-

dictions. This is a good way of identifying potential core

predictions but, ideally, they should then also be specifi-

cally tested. This can be carried out as follows. Assume

that a candidate for core prediction is denoted ycðt;bpÞ
and that its values are given by cy(t). Then one can form

the following constrained optimization problem:

max
p

Z
t

kycðt; pÞ � cyðtÞk subject to VðpÞ < d ð23Þ

where V is the cost function describing the quality of

the model, and where d can be chosen according to a
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5% significance threshold from some of the tests

described in the Section ‘Rejections based on a residual

analysis’. Note that even though solving Eqn (23) is

difficult, it follows the standard formulation of a con-

strained optimization problem, and there are advanced

optimization algorithms that can tackle such problems,

both locally [54] and globally [55].

Finally, for many systems biology models, the

dimension of the parameter space is so large that

searching it becomes a serious problem, especially for

the more advanced optimization algorithms. This is

one of the main reasons why smaller models may be

useful, especially for identification of core predictions.

For nested model structures, this is possible because a

smaller model structure is equal to the larger model,

with some of its parameter values set to constant val-

ues (typically to zero). Also in the non-nested case, a

smaller model may give information about a larger

model if the models are related to each other in some

other comprehensible way. For example, a state (or

reaction) in the smaller model could correspond to a

lump of many states (or reactions) in the larger model.

In all such cases, an analysis of the smaller model will

give information about the larger model. Note that

this is information that, in principle, is possible to

extract from an analysis of the larger model directly,

but that, in practice, is impossible to extract due to the

high dimensional of the larger model’s parameter

space. In that case, testing and comparing of different

submodels may be a feasible alternative for drawing

conclusions; for example concerning which parts of a

larger model that may, may not, and must be active, if

the larger model should explain the data. (see also the

discussion on the choice of model size in the Discus-

sion).

Summary of the central questions and steps

to be taken

We have now introduced the most important methods

and tests in this minireview; let us finally see how these

relate to each other, and suggest how they can be com-

bined to achieve a complete analysis of a given set of

data, prior knowledge and proposed explanations.

First, however, it should be stressed that the con-

struction of a formal division of the analysis process in

specific substeps is virtually impossible. First of all,

analysis is, just like modeling in general, an iterative

process, which requires human reasoning that cannot

be fully automated. For example, earlier steps and

analyses may have to be revisited due to new insights

and suggestions. Furthermore, each problem is unique,

and requires its specific approach and combination of

methods, possibly also including methods that have

not been proposed in this minireview. It is also impor-

tant to have a clear understanding of what the purpose

of the analysis is. As we have stressed repeatedly, the

purpose of a systems biology problem is generally differ-

ent from that of a classical engineering and statistical

problem, but this might not always be the case, and

there are certainly large variations between different

systems biology problem settings. Nevertheless, with

all these comments made, we would like to discuss the

structure of the overall problem by making a subdivi-

sion of the data analysis process into three major steps

(Fig. 10).

The first step is the reformulation and formalization

of the available data, prior knowledge, and suggested

explanations into formal data sets and model struc-

tures. We have not dealt with this step extensively in

this minireview because it is dealt with in many text

books and exemplified in many modeling articles

[4,9,24,25]. However, it should be stressed that the

choices regarding which model structures to consider

as different cases of a super model structure (contain-

ing all of them as special cases), and which model

structures to consider separately, is not always treated

in such texts, because model comparison is not an

explicit part of all modeling works. Furthermore, this

division problem is a highly nontrivial issue, and much

of the following analysis will provide further insights

into whether there are other, better, subdivisions.

Step I, Formalization
and subdivision

Step III After−analysis

Translation into graphical 
 models 

Translation into mathematical 
models 

Determination of reasonable 
boundaries of parameter values 

Specification of prior knowledge 

Subdivision of data series 

Can the assumption that  
 the model has generated the  
 data be rejected? 

Are the core predictions 
consistent with the prior  
knowledge? 

Can the surviving explanations 
be merged or subdivided?

Should a core prediction be  
formulated as a rejection of 
a subexplanation?

variations of each other? 

Are there acceptable explanations 
that can be considered as trivial 

and presentation of results

Are other explanations  
significantly better? 

Step II, Formal tests 
and evaluations 

Fig. 10. The three main steps in a model-

based data analysis and explanation evalua-

tion process. Also, common substeps and

questions are suggested.
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The second step is the most central step in this

review because it contains the actual tests and quality

evaluations. The overall question is whether an expla-

nation is acceptable. The first type of statistical tests

that we have considered test whether the null hypothe-

sis that the model has generated the data ZN can be

rejected. Such methods were reviewed in the section

‘Rejections based on a residual analysis’. It should here

be added that one also should test the quality of the

explanation from a biological point of view, and in the

light of the quality tags. It might, for example, be

the case that a core prediction (i.e. that is, a property

that must be fulfilled for a particular explanation to be

able to mimic the data) is biologically unrealistic. This

will not be seen by the tests described in the section

’Rejections based on a residual analysis’, but is still a

related question because it is the result of an analysis

of the quality of an individual explanation. The second

type of rejection concerns comparisons between expla-

nations. An explanation that passes the first type of

tests may still be significantly worse than another

explanation. Two important such methods were

reviewed in the section ‘The F and the likelihood ratio

test’, but it should again be stressed that this analysis

should be complemented by the results from the qual-

ity tag analysis, combined with the prior biological

knowledge.

The third and final step is concerned with the surviv-

ing explanations (i.e. those that have not yet been

rejected). Basically, this step deals with the presenta-

tion of the results. This, however, also involves a revis-

iting of the subdivision decisions taken in the first step.

This revisiting is a good idea, for example, when the

core predictions have shed some new light on the issue

of subdivisions. Consider for example, that a core pre-

diction shows that a particular reaction rate in a model

structure must have a high value (i.e. that small values

are excluded). That is the same as rejecting the sub-

model to the original model that lacks this particular

reaction rate (Fig. 3). The final result could therefore

be presented as a rejection result, but with a different

subdivision in competing explanations. Conversely,

some surviving explanations might also benefit from

being presented as a merged super-model containing

the individual models as special cases. This could be

the case if none of its tested submodels may be

rejected, and when this is not judged to be an interest-

ing insight in itself. Note, however, that the submod-

els might give different core predictions, which are

experimentally testable. In such a case, the submodels

could be presented differently, and the result could

serve as a guide for future experimental design. How-

ever, experimental design and the iteration of the

above mentioned analyses with the experimental data

gathering phase is the topic of an accompanying mini-

review [56], and is outside the scope of the present

one.

Software

An efficient and user-friendly software option for sta-

tistical testing is matlab, for which there are at least

two toolboxes (http://www.potterswheel.de and http://

www.sbtoolbox.org) [57] targeting the systems biology

community, which both have some basic statistical

testing functionalities. However, neither of them have

implemented all the methods reviewed here, although

this might be improved within the near future. There

are also rather well-developed statistical environments

with several ready-to-use tests in both mathematica

and maple. Some more statistically oriented softwares

are given by R (http://www.r-project.org) and s-plus

(http://www.insightful.com). However, none of these

other generic software environments provide toolboxes

for the systems biology community.

Discussion

The focus of this minireview is the problem of evaluat-

ing and comparing two or several explanations for a

given set of data and prior knowledge, so as to identify

the best available explanations. We have reviewed

methods that evaluate a single explanation with respect

to the data directly, methods for evaluating whether

one explanation is significantly better than another,

and put them together into a general framework for

comparison and evaluation of suggested explanations.

Most of the presented methods are based on statisti-

cal and engineering methods, which have a slightly dif-

ferent epistemological setting than that of systems

biology (i.e. the type of knowledge that is sought is

different). These differences are important, and also

are important to clarify and agree upon if systems

biology is to mature as a research field. To contribute

to this process, we will now seek to clarify some of

these epistemological differences.

In a systems biology setting, the focus is on the

understanding of the underlying biological mecha-

nisms, and not just on achieving an optimal predictor

of a given system output. We have highlighted this

difference through the usage of the term explanation,

rather than the term hypothesis, which is the typical

choice in a statistical hypothesis testing setting.

An important concept in relation to this is instru-

mentalism, as are its various opposing concepts.

Instrumentalism is the view that a model is only used
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as an instrument (as a means) to obtain a certain pre-

diction [8,58]; hence, view is often the case in an engi-

neering setting. One opposite of instrumentalism is

direct realism [58]. According to this view there is a

one-to-one correlation between a ‘perfect’ model and

the real system. This means that the ‘perfect’ model

will not only be able to give accurate predictions of

the measurable system output y, but also will provide

an accurate description of all the components and pro-

cesses involved in the generation of this output. This

view could certainly be ascribed to many theoretical

physicists, which aspire to find a final theory describ-

ing reality as it really is [8,59]. A more moderate view

is referred to as critical realism [58]. According to this

view, it is acknowledged that a model yielding good

predictions on a wide variety of data could be expected

to contain some degree of correlation between its com-

ponents and mechanisms and the components and

mechanisms of the real system. However, a model is

still viewed as a simplification of the true system,

which only captures some of its aspects, and one there-

fore has to be careful when drawing conclusions about

which these aspects might be. Of these three options

(i.e. instrumentalism, direct realism and critical real-

ism), we argue that it is the last option that describes

the best view for systems biology.

One final issue regarding the differences between the

underlying modeling philosophies concerns the ideal

size of a model. A classical engineering principle for

choosing the size of a model is known as Occam’s

razor. According to this principle, one should not add

any unnecessary details to the model (i.e. one should

choose the smallest model that does the job). Another

reason for not choosing overly complex problems is

that the variance term Errvar in Eqn (14) increases with

complexity (i.e. the over-fitting problem). However, in

a systems biology setting, the situation is different.

First, the purpose with the model is to provide an

explanation. That means that ‘doing the job’ could

mean including all the known details of the system,

apart from being able to produce good predictions by.
Furthermore, biological model structures are typically

of a limited flexible (i.e. they will not be able to

describe the data better than a certain agreement, even

if more mechanistic details within the given explana-

tion are added). To stress this difference between the

size of the model and its flexibility, one sometimes uses

measures of model complexity other than the number

of parameters or states. One such measure is the effec-

tive number of parameters, AM, in Eqn (11). That AM
and dim (p))tM typically are widely different in a

systems biology model means that unidentifiability

typically is a severe problem; however, it also means

that the variance increase (the over-fitting problem)

typically is a less pronounced problem. Therefore, a

systems biology model can often benefit from adding

more mechanistic details, and thus providing a ‘better’

explanation, without suffering from the problem of

over-fitting or variance increase. Note that this could

still be considered as being consistent with the princi-

ple of Occam’s razor if the additional mechanistic

details are considered as a part of the data that should

be explained by the model (Fig. 11). Finally, these

insights do not mean that systems biology models

always should be large. By contrast, as described in

the section ‘A general scheme for comparison between

two models’, finding small models that can and cannot

explain the data is a highly useful way of identifying

core predictions (i.e. of learning crucial information

about the available explanations).

It is important when using statistical tests to

evaluate a potential explanation to achieve a sound
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Fig. 11. Symbolic scheme illustrating the

differences in ideal model size between

different traditions as a difference in

whether the prior knowledge is a part of the

data set that should be predicted/explained

or not. The more that emphasis is laid on

the prior knowledge, the more that

mechanistic details may have to be

included, and the larger the models

become.
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criticism of the statistical results. Statistical results

should always be used as support for a decision, and

not as the final decision itself. This is especially the

case in a systems biology setting because there is so

much prior knowledge that the explanation should be

evaluated with respect to. It is also important to be

critical of the actual test (i.e. ‘to test the test’). This

is especially the case if a nonstandard version of a

test has been constructed especially for a particular

problem. Testing the test can be carried out by con-

structing relevant test problems where the answer is

known, and where the behavior of the test entity can

be evaluated. Another important aspect of testing the

test is to examine the underlying assumptions. This

could concern the assumptions regarding the noise in

the system. Perhaps it is possible to examine further

what the true noise distribution is, and then to mod-

ify the test accordingly. This was conducted, for

example, by Kreutz et al. [60], where it was shown

that western blot noise typically is multiplicatively

normal, and that it is possible to make it additively

normal (i.e. the standard assumption) by a simple

modification of the image analysis. However, when it

is impossible to modify the test procedure so that the

theory can be fulfilled, it might still be possible to

make an estimate of how much the assumptions are

violated, and to estimate the qualitative and quantita-

tive implications of this violation [10].

Finally, let us add some short comments regarding

important future work within this field. The classical

systems biology situation of nonlinear, dynamical,

non-nested models has received little attention in the

statistical literature, compared to many other model-

ing situations, and few results and methods are actu-

ally valid for this situation. It will be important to

develop methods for this specific situation, and to

further evaluate the implications of violating the

assumptions of the currently available methods in

these specific ways. Currently, the most general way

of comparing whether one model is significantly bet-

ter than another is probably the likelihood ratio test,

where the corresponding distribution is generated

using some kind of parametric bootstrap [10]. How-

ever, this approach has been used relatively little in

the systems biology discipline, and it must generally

be examined further, both theoretically and in practi-

cal situations [51]. The approach is also somewhat

computationally expensive. Therefore, a feasible but

highly useful future goal could be to implement a

more mature version of that approach in a public

software platform associated with a powerful com-

puter cluster, where one can submit systems biology

models for testing of significant differences.
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