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Measurement data

m

DNA and Protein microarrays X-ray crystallography
(genomics, proteomics, ...)

measurement devices improved tremendously

BUT always limited and noise corrupted data!

§|St° Set-based methods using convex optimization, J. Hasenauer 1/24



How can measurement data be used in modeling? ?

Data + Estimation Model Prediction
y
x = f(x,p,u)
y = h(X7p7 LI) i
t t

Classical approach

@ Calculation of optimal parameter
(e.g. least-square or maximum-likelihood)

= optimal model of the process

@ Model falsification/rejection and prediction using optimal model
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How can measurement data be used in modeling? ?

Data + Estimation Model Prediction

x = f(x,p,u) i

y = h(X7p7 LI)

Classical approach

@ Calculation of optimal parameter
(e.g. least-square or maximum-likelihood)

= optimal model of the process

@ Model falsification/rejection and prediction using optimal model

Problem: For sparse, noisy data many parameters are equally plausible.
= How can this be taken into account?
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How can measurement data be used in modeling? ?

Data + Estimation Model Prediction
y y
x = f(x, p', u)
= | y=htxpu) | =
ie{l,...,N}
t t

Sampling-based approach

@ Calculation of a sample of good parameters
(e.g. Bayesian methods or bootstrapping)

= sample of good models of the process

@ Model falsification/rejection and prediction using a sample of models
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How can measurement data be used in modeling? (P

Data + Estimation Model Prediction
y y
x = f(x, p', u)
= | y=htxpu) | =
ie{l,...,N}
t t

Sampling-based approach

@ Calculation of a sample of good parameters
(e.g. Bayesian methods or bootstrapping)

=- sample of good models of the process

@ Model falsification/rejection and prediction using a sample of models

Advantage: More robust decision making.
Problem: The usage of a finite sample makes model falsification difficult.
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How can measurement data be used in modeling? ?

Data + Estimation Model Prediction
y
X = f(x,p,u)
y = hx,p,u) | =>
peP
t t

Set-based approach [aulin2001]

@ Calculation of the set of consistent parameters
(e.g. interval arithmetics, SOS, or convex optimization)

= all consistent models of the process (with a certain structure)

@ Model falsification/rejection and prediction using the set of models
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How can measurement data be used in modeling? ?

Data + Estimation Model Prediction
y
X = f(x,p,u)
y = hx,p,u) | =>
peP
t t

Set-based approach [aulin2001]

@ Calculation of the set of consistent parameters
(e.g. interval arithmetics, SOS, or convex optimization)

= all consistent models of the process (with a certain structure)

@ Model falsification/rejection and prediction using the set of models

Advantage: Model falsification is very easy.
Problem: Analysis is computationally demanding.
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How can measurement data be used in modeling? (P

Data + Estimation Model Prediction
y
X = f(x,p,u)
y = hx,p,u) | =>
peP
t t

measurement + measurement uncertainties

I

model + model uncertainties

4

prediction + prediction uncertainties

Goal of this talk: lllustration of the usage of different methods for the
analysis of model and prediction uncertainties!

&glstc Set-based methods using convex optimization, J. Hasenauer 2/24



Outline

© Introduction

© Parameter estimation and model falsification

© Steady-state uncertainty

@ Summary/Conclusion
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Outline

© Parameter estimation and model falsification
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Introduction: Set-based parameter estimation ?

Problem of set-based parameter estimation

Given a set of measurement data y(tx) = y(tx) + €(tx) and bounds for
the measurement noise €(tx), determine the set of all parameters, which
could have generated the measurement data.

= set of consistent parameters P*

estimation

=

v | I I P2 M .
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Introduction: Set-based parameter estimation ?

Problem of set-based parameter estimation

Given a set of measurement data y(tx) = y(tx) + €(tx) and bounds for
the measurement noise €(tx), determine the set of all parameters, which
could have generated the measurement data.

= set of consistent parameters P*

estimation

=

g prediction
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Introduction: Set-based parameter estimation

?

Problem of set-based parameter estimation

Given a set of measurement data y(tx) = y(tx) + €(tx) and bounds for
the measurement noise €(tx), determine the set of all parameters, which

could have generated the measurement data.

= set of consistent parameters P*

estimation
i 75*
y P2 P*
. prediction
t P1

Problem: It is impossible to compute P* precisely!
= Computation of outer approximation P* O P*
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Introduction: Set-based parameter estimation ?

Problem of set-based parameter estimation

Given a set of measurement data y(tx) = y(tx) + €(tx) and bounds for
the measurement noise €(tx), determine the set of all parameters, which
could have generated the measurement data.

= set of consistent parameters P*

estimation
i 75*
y P2 P*
e prediction
t P1

Why is the outer approximation P* useful?
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Usage of P* for model falsification

?

By definition the set of consistent parameters P* contains all parameter
p of a model which can explain the measurement data.

= P* contains all parameter which can describe the datal!

Let's assume we have two models and the corresponding sets P*:

Model A Model B
\LERE ‘ ‘

t OamONO O

~ = LB A

= Model A is falsified as there are no consistent parameters.
= Model B may be able to reproduce the data.

sist?

Set-based methods using convex optimization, J. Hasenauer



Usage of P* for model falsification

?

By definition the set of consistent parameters P* contains all parameter
p of a model which can explain the measurement data.

= P* contains all parameter which can describe the datal!

Let's assume we have two models and the corresponding sets P*:

Model A Model B
\LERE ‘ ‘

t OamONO O

~ = LB A

= Model A is falsified as there are no consistent parameters.
= Model B may be able to reproduce the data.

Calculation of P*?

sist?
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Problem setup of set-based parameter estimation ?

System class
We consider nonlinear discrete time systems,
Xx(k+1) — F(x(k), p), x(0) — X0
y¥ = H(x, p),

in which x(¢) € R” is the state, y(X) € R™ is the output, p € RY the
vector of unknown parameters, and F and H are rational functions.

F can be obtained by discretizing a continuous process (— ODE solver).

Measurement data

.)_/(k) :y(k)+6(k)a kE{l,...7N}, { y(k) y(k)
in which y(¥) € R™ is the measured noise Y I I I
corrupted output, and (k) € R™ is the bounded
measurement noise. =y e Yk ty

ISE®  setbased methods using convex optimization, J. Hasenauer 7/24




Computation of P* via a series of feasibility problems ?

Ps I:' set of consistent parameters

P2 p; P P> |:| outer approximation of set
of consistent parameters
Py I:' test sets

P1

Feasibil |ty problem [Hasenauer2010a]

@ verification that a set P; cannot contain consistent parameters
o feasibility problem for test set P;:

find peP;, xKex, ykeyk
(P) : { subject to x(*t1) = F(x() p), Vk — dynamics
yK) = H(x¥) p), Vk — measurement

(P) infeasible <= P; does not contain consistent parameters
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Summary: Reformulation of the feasibility problem ?

feasibility problem (P) hatrd / :mposs'b'e
O Solve

reformulation using
a monomial vector £

quadratic feasibility problem (QP)

reformulation using
the monomial matrix X = ££7
and convex relaxation

m e e e e e e e e e — - -

relaxed convex feasibility problem (RP)| —— “easy” to solve
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Quadratic decomposition

Reformulation of dynamics and measurement
e Monomial vector: £7 = (1, p, xt9), y(K) p. x(K) ) e R"
@ Dynamics/Measurement:

0 = xk) — F(x(9) p) := G(xk+D) x(K) p)
= 0= G(x* ), x®, p) =T Qig, Vi

Quadratic feasibility problem

T ¢ € R"

J subjectto &TQi¢=0 i=1,...,c
(QP): BE>0
&G =1

in which p € P;, x(K ¢ x(k) (k) ¢ Pk — B(Pi,X(k),y(k))f >0

(QP) infeasible <= (P) infeasible
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Convex relaxation

Feasibility problem

e Symmetric monomial matrix: X = &¢€7

@ Feasibility problem in X:

find X e st
subject to tr(@QX)=0 i=1,...,c
== BXe1 > 0
(QP): tr(eref X) =1
rank(X) =1
X =0
in which e; =[1, 0, ..., 0]"

sist?
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Convex relaxation

Relaxed feasibility problem

e Symmetric monomial matrix: X = &¢€7

@ Feasibility problem in X:

find X e st
subject to tr(@QX)=0 i=1,...,c
== BXe1 > 0

(QP): tr(eref X) =1

:

X =0

S

in which e; =[1, 0, ..., 0]"

sist?
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Convex relaxation

Relaxed feasibility problem

e Symmetric monomial matrix: X = &¢€7

@ Feasibility problem in X:

find X e st
subject to tr(@QX)=0 i=1,...,c
~D\ . BXe1 > 0
(QP): tr(eref X) =1

:

X =0

S

in which e; =[1, 0, ..., 0]"

(RP) infeasible => (QP) infeasible = (P) infeasible

= (RP) to verify that P; cannot contain consistent parameters

sist?
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Computation of the set of consistent parameters ?

Algorithm
e computation of P* based on a bisection algorithm
e in each bisection step the matrix B(P;, XX, Y(K) is modified

@ lower and upper bounds for all parameters known initially
P2

consistent parameters P*

[ ] testsets P

|:| inconsistent sets

P1
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Computation of the set of consistent parameters ?

Algorithm
e computation of P* based on a bisection algorithm
e in each bisection step the matrix B(P;, XX, Y(K) is modified
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|:| inconsistent sets

P1

&ilst° Set-based methods using convex optimization, J. Hasenauer 1224



Computation of the set of consistent parameters ?

Algorithm
e computation of P* based on a bisection algorithm
@ in each bisection step the matrix B(P;, X(¥), Y(¥)) is modified

@ lower and upper bounds for all parameters known initially
P2

consistent parameters P*

[ ] testsets P

|:| inconsistent sets

P1

%,ﬁ;:ls‘l:o Set-based methods using convex optimization, J. Hasenauer 12/24



Computation of the set of consistent parameters ?

Algorithm
e computation of P* based on a bisection algorithm
@ in each bisection step the matrix B(P;, X(¥), Y(¥)) is modified

@ lower and upper bounds for all parameters known initially
P2

i I consistent parameters P*

I [ ] testsets P

|:| inconsistent sets

P1
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Computation of the set of consistent parameters ?

Algorithm
e computation of P* based on a bisection algorithm
@ in each bisection step the matrix B(P;, X(¥), Y(¥)) is modified

@ lower and upper bounds for all parameters known initially
P2

J I I consistent parameters P*

I T I D test sets P;
—I—i Lo |

| |:| inconsistent sets

P1
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Computation of the set of consistent parameters ?

Algorithm
e computation of P* based on a bisection algorithm
@ in each bisection step the matrix B(P;, X(¥), Y(¥)) is modified

@ lower and upper bounds for all parameters known initially
P2

[ ] testsets P

] |:| inconsistent sets

consistent parameters P*

|

_;,I I
|

1

P1
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Computation of the set of consistent parameters ?

Algorithm
e computation of P* based on a bisection algorithm
@ in each bisection step the matrix B(P;, X(¥), Y(¥)) is modified

@ lower and upper bounds for all parameters known initially
P2

[ ] testsets P

] |:| inconsistent sets

consistent parameters P*

|

+I I
|

1

P1
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Computation of the set of consistent parameters (P

Algorithm
e computation of P* based on a bisection algorithm
@ in each bisection step the matrix B(P;, X(¥), Y(¥)) is modified

@ lower and upper bounds for all parameters known initially
P2

consistent parameters P*

test sets P;

inconsistent sets

OO

outer approximation P*

P1

— outer approximation of the set of consistent parameters
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Example: MAP-kinase-cascade (1) ?

/VN o
~ —
/VN °
—

@ Model A: without feedback (—) = 0= FA(x(k+D x(K) p)
@ Model B: with feedback (— /--) =0= FB(X(kH)’X(k)’p)

Which model is correct?
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Artificial measurement data: (generated from Model A)

Example: MAP-Kinase-Cascade (2)

bitgt
Q02 1000 % % % 1000 %
v ) % 8 0 %
2015 % < &
< =600 % 2 600
& o1 % = =
= % % S = a0
005 200 200
1 1
0 1 2 3 4 5 6 7 0 3 4 5 6 1 0 1 2 3 4 5 6 1
k k :

Set of consistent parameters:

Model A (without feedback) Model B (with feedback)

P* = () = Model B cannot describe the
above artificial data.

(Only guaranteed for discrete time model!)

0001 0.001 ko
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Artificial measurement data: (generated from Model A)

Example: MAP-Kinase-Cascade (2)

02 % 1000 % % % 1000 f % % %
&
< SR i & w0 ¢
i > S
< % =600 % 2 600
oo % i“ <
= % % S = a0
008 200 200
1 1
0 1 2 3 4 5 6 7 0 3 4 5 6 1 0 1 2 3 4 5 6 1
k k :

Set of consistent parameters:

Model A (without feedback) Model B (with feedback)

P* = () = Model B cannot describe the
above artificial data.

(Only guaranteed for discrete time model!)

How can the knowledge we gained by
doing set-based estimation be used?

0001 0.001 ko
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Outline

© Steady-state uncertainty
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What do we really know?

A question every modeler should ask:

Given certain measurement data, can | trust the model predictions?

Data + Estimation

Model

x = f(x,p, u)
y = h(x,p,u)
peP

Prediction

sist?
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What do we really know?

A question every modeler should ask:

Given certain measurement data, can | trust the model predictions?

Data + Estimation

Model

x = f(x,p, u)
y = h(x,p,u)
peP

Prediction

key property: asymptotic behavior
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Formulation of uncertainty analysis as feasibility problem?

X = set of feasible steady states
Xy of an uncertain system

(in general not computable
analytically!)

1 X, Xs X.
Z2 1 w § X; = set for which infeasibility

| certificates can be computed

Xy X, = obtained outer
approximation of X

Feasibility problem

@ verification that a set X; cannot contain steady states
e feasibility problem (for x = f(x, p)):

find xXEX,peP
subject to  f(x,p) =0

(P):

(P) infeasible <= X; does not contain steady states for p € P
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Formulation of uncertainty analysis as feasibility problem?

X = set of feasible steady states
Xy of an uncertain system

(in general not computable
analytically!)

1 X Xs X.
T2 ] "M ’ X; = set for which infeasibility

| certificates can be computed

Xy X, = obtained outer
approximation of X

Feasibility problem

@ verification that a set X; cannot contain steady states
e feasibility problem (for X = f(x, p)):

find xXEX,peP
subject to  f(x,p) =0

(P):

Computation of the set of feasible steady states employes the same
methods as the computation of the set of consistent parameters!
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Example: TNF-induced anti-apoptotic signaling

specific specific
ligand 1 ligand 2
INE receptor, / \

module TNFR2

T\IFRl

complex

TNFR2

complex

RIP

TKK IKK f 250
module

NF-xB

module ——NF-kB-I-sBa

NF-xB I-kBa

—_ A
N

NF-+xB I-xBar

I-xBa production

A20 production

TRAF2 production

gene expression modul

Schematic of antiapoptotic signaling pathway

Biological relevance:
e apoptosis
e proliferation
e inflammation
Components:
o TNF-receptors
o NF-xB signaling
pathway
Model:

o 24 state variables

o 56 parameter
Inputs:

o TNF1

e TNF2
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Computation of X

@ Parameter uncertainties of factors:
T _
p" =(p1,--,pq)
@ Parameter set P is a hyperrectangle

D1
P1nom

log

Set of feasible steady states for a variation: p” = (2,2,2,2)

Li,nom
T T T T
Tutervall [ min, £3,maz]
4= . < Monte-Carlo-Results
Timan  3- ] : E
and

Timin  2- ; i i

TRILRT TR2LT A20a InB NF—rxBn A20¢
TRILR TR2L TRAF2 IKKa NF—xB TRAF2 InBt

Set-based methods using convex optimization, J. Hasenauer
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Biological findings (P

TR1LRT

TRILRT as o TNF
L TNF-R1
stimulation / \

101

TNF-R1
activity,,,

750
500

250

”
p2 2 (TNF1,)
(TNF2,)

TNF-R2 stimulation

Activity
regulation

Model prediction:
Receptor 2 regulates activity
of receptor 1 l

Apoptosis

Surprising results

The signal transduction process via the TNF receptor 1 complex is more
sensitive to TNF2 than to TNF1. = strong crosstalk!
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Outline (P

@ Summary/Conclusion
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Summary

Coherent framework for set-based ...

@ parameter estimation [Kiipfer2007, Hasenauer2010a, Rumschinski2010],
@ model falsification [Anderson2009, Hasenauer2010a, Rumschinski2010], and
("] Steady state predictions [Waldherr2008, Hasenauer2010b, Waldherr2011a],

by employing powerful tools from convex optimization.

Alternative to: interval analysis and constraint propagation
[Jaulin2001, Tucker2006, Walter2007]

Extensions to perform set-based ...
@ experimental design [Hasenauer2010a], and
@ robustness analysis [Waldherr2011b]

Toolbox: bioSDP for SDP-based analysis of dynamical systems.
Challenges

@ Discretization error — Torkel Glad
e Computational complexity — Pelle Lundberg
@ Application to real world examples — Pelle Lundberg

ist?

Set-based methods using convex optimization, J. Hasenauer

22/24


http://biosdp.sourceforge.net/

Conclusion / Opinion

Shift towards rigorous analysis of uncertainties required!

measurement + measurement uncertainties

I

model + model uncertainties

I

prediction + prediction uncertainties

I

new experiments + new experiments uncertainties

Uncertainty analysis is a crucial task in systems biology. There are some
methods available, but they are limited and not widely used!

= many challenging open problems
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