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Abstract The non-linear mixed-effects model based on stochastic differential
equations (SDEs) provides an attractive residual error model, that is able to handle
serially correlated residuals typically arising from structural mis-specification of the
true underlying model. The use of SDEs also opens up for new tools for model devel-
opment and easily allows for tracking of unknown inputs and parameters over time. An
algorithm for maximum likelihood estimation of the model has earlier been proposed,
and the present paper presents the first general implementation of this algorithm. The
implementation is done in Matlab and also demonstrates the use of parallel computing
for improved estimation times. The use of the implementation is illustrated by two
examples of application which focus on the ability of the model to estimate unknown
inputs facilitated by the extension to SDEs. The first application is a deconvolution-
type estimation of the insulin secretion rate based on a linear two-compartment model
for C-peptide measurements. In the second application the model is extended to also
give an estimate of the time varying liver extraction based on both C-peptide and
insulin measurements.
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Introduction

The non-linear mixed-effects (NLME) model based on ordinary differential equations
(ODEs) is a widely used method for modelling pharmacokinetic/pharmacodynamic
(PK/PD) data [1], since the model enables the variation to be split into inter- and intra-
individual variation. It is, however, a well known problem that this model class has a
too restricted residual error structure, as it assumes that the residuals are uncorrelated
white noise. This assumption applies well to the expected distribution of assay error,
but it is unfortunately a crude simplification to assume that the assumption also applies
to the remaining sources of error [2]. Other important sources of error may arise from
structural model mis-specification or unpredictable random behavior of the underly-
ing process, which both result in serially correlated residual errors. Previous work
with simulation of more complex error structures has shown that ignoring the serial
correlation may lead to biased estimates of the variance components of the model or
all population parameter estimates depending on the error structure [3].

A powerful way to deal with these problems is to introduce stochastic differential
equations (SDEs) in the model setup. SDEs are an extension to ODEs and facilitate
the ability to split the intra-individual error into two fundamentally different types:
(1) serially uncorrelated measurement error, which is typically mainly caused by
assay error and (2) system error, which may be caused by model mis-specifications,
simplifications or true random behavior of the system.

Apart from providing a statistically more adequate model setup, the SDEs also
allow new tools for the modeller. The SDE approach results in a quantitative estimate
of the amount of system and measurement noise, and it can therefore also be used as
a tool for model validation. If no significant system noise is found to be present, this
indicates that the proposed model structure gives a suitable description of the data.
However, if significant system noise is found, it can be estimated and may be used to
identify a possible remaining model structure, since aspects which are not explicitly
modelled will give rise to system noise. It is important to emphasize that this rela-
tion does not hold the other way around, since system noise may also arise from true
unmodellable random behavior of the system, and estimated system noise may thus
not be seen as evidence of an insufficient model structure. A detailed iterative scheme
for model development based on SDEs has been described in [4]. Another important
advantage of the SDE approach is the inherent confidence intervals for system states.
This is facilitated by the estimation of system noise, and thus follows as a natural part
of the model specification.

Several programs exist for modelling based on SDEs. The first implementations
focused on single subject modelling, such as Continuous Time Stochastic Modelling
(CTSM) [5]. CTSM is in fact also able to use multiple individuals for estimation of
structural parameters, but this is done using a naive pooled likelihood function where
no inter-individual variance components are estimated. Later research has also made
it possible to include SDEs in population modelling by using an approximation algo-
rithm of the likelihood function with SDEs for the widely used NLME model. This
algorithm is described in [6] and is based on the use of the Extended Kalman Filter
to estimate conditional densities of each observation to form the individual likeli-
hood function. The population likelihood function is then approximated based on the
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first-order conditional estimation (FOCE) method. It has been shown in [7] how this
algorithm for estimation of SDEs can be used in NONMEM [8], but this is by no
means a trivial programming task to set up for a given model. It requires a modified
data file and an implementation of the Kalman filter within the NONMEM control
stream. Moreover, the NONMEM implementation cannot be used to form Kalman
smoothing estimates, which is an important feature of the SDE approach, where all
data is used to give optimal estimates at each sampling point.

This paper will present the first prototype implementation of a general software
tool for estimation of NLME models based on SDEs. The implementation has been
made in Matlab and it makes experimentation with the new modelling approach read-
ily available. The flexibility of the modelling approach will be demonstrated by two
examples of applications. In the first example the model is used for stochastic decon-
volution to estimate insulin secretion rates in 12 type II diabetic patients and in the
second example the model is used to estimate/track the time variant behavior of the
liver extraction rate for the same individuals.

Theory

This section contains an overview of the theory for population modelling using NLME
models based on SDEs. It will present the state space model for individual modelling
and how this can be extended to incorporate SDEs. The parameters of the population
model are estimated with a maximum likelihood (ML) approach by first defining an
individual likelihood function, which forms the basis for the population likelihood
function. The individual likelihood function is evaluated on the basis of the Extended
Kalman Filter (EKF), and this will also be outlined. A more detailed description of the
estimation algorithm can be found in [6]. To ease notation, all vectors and matrices
are written using a bold font.

A mixed-effects model is used to describe data with the following general structure

yi j , i = 1, . . . , N , j = 1, . . . , ni (1)

where yi j is a vector of measurements at time ti j for individual i , N is the number
of individuals and ni is the number of measurements for individual i . Note that the
number of measurements for each individual may vary. In a mixed-effects model the
variation is split into intra-individual variation and inter-individual variation, which
is modelled by a first and second stage model.

First stage model

The first stage model for an NLME model with ODEs can be written in the form of a
state space model. A state space model consists of two parts, namely a set of continuous
state equations defining the dynamics of the system and a set of discrete measurement
equations, which defines a functional relationship between the states of the system and
the measurements obtained. In the general form the state space equations are written
as
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dxt = f (xt , ut , t,φi )dt (2)

yi j = h(xi j , ui j , ti j ,φi ) + ei j (3)

where t is the continuous time variable and the states of the model and the optional
inputs at time t are denoted xt and ut respectively. The input ui j is typically frequently
sampled covariates such as body temperature etc. which may affect the system, or a
variable indicating an interaction with the system such as an intravenous infusion. Both
the state, measurement and input can be multi-dimensional, and are in such cases thus
represented by a vector at time ti j . The individual model parameters are denoted φi
and finally f (·) and h(·) are the two possibly non-linear functions defining the model.
Measurements are assumed observed with an uncorrelated Gaussian measurement
error. The variance of the error may depend on both state, input, time and individual
parameters, that is ei j ∈ N (0,�(xi j , ui j , ti j ,φi )).

It is important to draw attention to the concept of states, as this is essential to the
understanding of the model setup. States are generally not directly observable or at
best only observable through measurement noise. The actual relation between mea-
surements and states is defined in the measurement equation by the function h(·). A
state can represent many different aspects of the system of interest, e.g. concentra-
tions or amounts in compartments, a volume, a parameter with unknown time varying
behavior, or an input to the system that we wish to estimate. The state space formula-
tion is thus a very flexible form of model specification, and the use of the state space
model will be illustrated with the applications presented later on in this paper.

Extending the first stage model with SDEs

In the ordinary state space model, noise is only allowed to enter through the measure-
ment equation, see Eq. 3. The result is that error due to model mis-specification or
true random fluctuations of the states is absorbed into the measurement error term and
hence may give rise to correlated residuals. To allow for error to originate from the
system specification, a stochastic term is added to the system equation. This results in
a stochastic state space equation defined as follows

dxt = f (xt , ut , t,φi )dt + σω(ut , t,φi )dωt (4)

yi j = h(xi j , ui j , ti j ,φi ) + ei j (5)

where ωt is a standard Wiener process defined by ωt2 − ωt1 ∈ N (0, |t2 − t1|I). The
entire part σω(ut , t,φi )dωt is called the diffusion term and describes the stochastic
part of the system and f (xt , ut , t,φi )dt is called the drift term and describes the deter-
ministic part. Together the drift and diffusion terms define the stochastic dynamics of
the system.

By looking at the formulation of the extended first stage model, it is seen that
noise is now allowed to enter in two places, namely as system noise via the diffusion
term and as measurement noise. It is noted that if no system noise is present, the
model will reduce into the standard ODE case, and this also ensures that physiological
interpretation of structural parameters is preserved with the use of an SDE model.
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Second stage model

The second stage model for the individual parameters describes the variation of the
individual parameters φi between individuals and can be defined in a number of ways,
each with different properties. In the present work it has been chosen to use

φi = g(θ, Zi ) · exp(ηi ) (6)

where ηi is the multivariate random effect parameter for the i th individual, which is
assumed Gaussian distributed with mean zero and covariance � :ηi ∈ N (0,�). The
fixed effect parameter of the NLME model is θ , which is also sometimes referred to
as the structural parameter or population parameter. The second stage model in Eq. 6
includes an optional covariate Zi . This can be used to include individually measurable
covariates such as height, weight etc. that could affect φi . The chosen formulation of
the 2nd stage model restricts variations in ηi from changing the sign of g(θ, Zi ) which
is typically an advantage as φi may be used as parameter for a variance or other sign-
sensitive parameters. Moreover the resulting distribution of the individual parameters
is log-Gaussian, as is often the case when dealing with PK/PD models. The second
stage model in Eq. 6 may easily be replaced if other model structures are needed,
and this can be done without yielding any changes to the final population likelihood
function as long as ηi is still assumed to have a Gaussian distribution.

Maximum likelihood estimation of the NLME model with SDEs

The full set of parameters to be estimated for the final NLME model with SDEs are the
matrices �, σω, � and the fixed effect parameters in the vector θ . The three matrices
are usually fixed to some degree so that only the diagonals or other partial structure
remains to be estimated.

The estimation of model parameters is based on a first stage likelihood function,
which is formed as a product of probabilities for each measurement. Due to the assump-
tion of correlated residuals with the inclusion of the Wiener process, it is necessary to
condition on the previous measurements to define the probability density of each mea-
surement. In the approach chosen here, this is done by assuming that the conditional
densities for the states are Gaussian and thus fully described by the state-prediction
and the state prediction variance for each observation. These can be found using the
Extended Kalman filter, which gives the unbiased minimum variance estimate of the
evolution of the model states [9]. This will hold exactly for the linear case but only as an
approximation in the non-linear case. The assumptions for the EKF can be examined
by testing for a Gaussian distribution of the residuals and by testing for correctness of
the estimated SDEs [10]. The prediction from the EKF is defined by

ŷi( j | j−1) = E( yi j |φi ,�, σω, ui ,Yi( j−1)) (7)

Ri( j | j−1) = V ( yi j |φi ,�, σω, ui ,Yi( j−1)) (8)
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where Yi j = [ yi1, . . . , yi j ] and this gives the conditional distribution of the one-step
prediction error

εi j = yi j − ŷi( j | j−1) ∈ N (0, Ri( j | j−1)) (9)

The first stage likelihood function is calculated as the simultaneous density function
for the i th individual

p1(Yini |φi ,�, σω, ui ) =
⎛
⎝

ni∏
j=2

p(yi j |Yi( j−1), ·)
⎞
⎠ p(yi1|·) (10)

≈
ni∏

j=1

exp
(
− 1

2εT
i j R−1

i( j | j−1)εi j

)
√|2π Ri( j | j−1)|

(11)

where conditioning on φi , �, σω and ui is denoted “·”.
Based on the first and second stage model density functions, the full NLME like-

lihood function can now be defined. The second stage distribution is simply a mul-
tivariate Gaussian density denoted p2(ηi |�), and combining this with the first stage
distribution results in the population likelihood function

L(θ ,�, σω,�) =
N∏

i=1

∫
p1(Yini |ηi , θ ,�, σω, ui )p2(ηi |�)dηi (12)

=
N∏

i=1

∫
exp(li )dηi (13)

where li is the a posteriori log-likelihood function for the random effects of the i th
individual given by

li = −1

2

ni∑
j=1

(
εT

i j R−1
i( j | j−1)εi j + log |2π Ri( j | j−1)|

)
− 1

2
ηT

i �−1ηi − 1

2
log |2π�|

(14)

The population likelihood function in Eq. 13 cannot be evaluated analytically, and
therefore li is approximated by a second-order Taylor expansion, where the expansion
is made around the value η̂i that maximizes li . At this optimum the first derivative
∇li

∣∣
η̂i

= 0 and the population likelihood function therefore reduces to

L(θ ,�, σω,�) ≈
N∏

i=1

∣∣∣∣
−	li
2π

∣∣∣∣
− 1

2

exp(li )
∣∣∣
η̂i

(15)

as shown in Appendix. The approximation of the 2nd derivative 	li is done using the
FOCE method, as it is also normally done in the NLME model based on ODEs. The
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objective function for parameter estimation is chosen as the negative log-likelihood
function given as

− log L(θ ,�, σω,�) ≈
N∑

i=1

(
1

2
log

∣∣∣∣
−	li
2π

∣∣∣∣ − li

)
(16)

Kalman filtering

The Extended Kalman Filter plays a central role for working with the NLME model
with SDEs as seen from the previous section. Therefore a brief introduction to the EKF
will be given here, as well as to the three new types of state estimates made available.
For a detailed description of the EKF algorithm please refer to [5,6,11,12].

For linear state-estimation problems the Kalman Filter will give an unbiased mini-
mum variance state estimate. The solution can be derived explicitly using simple linear
algebra, and hence the algorithm runs efficiently in a computer implementation. For
non-linear problems it is necessary to use another method for state-estimation like
that obtained by the Extended Kalman Filter, which has been used here. The Extended
Kalman Filter is for the main part identical to the Kalman Filter, except for the state
prediction which requires a solution to the non-linear differential system equations.
This solution is obtained by a point-wise first-order approximation and therefore, for
non-linear systems, the EKF will only provide an approximate minimum variance esti-
mate of the states. The EKF also runs slower due to the need for a numerical algorithm
to solve the non-linear differential equations.

The Kalman Filter is a two-part algorithm consisting of prediction and updating,
which iterates through all observations. In the prediction part the current estimated
states and covariances are used to create predictions of the two first moments of the state
and observation to a time point ti j given the information at time ti( j−1). These predic-
tions are denoted x̂i( j | j−1), P̂ i( j | j−1), ŷi( j | j−1) and R̂i( j | j−1), respectively. Updating
is performed at measurement time points, where the states and covariances are updated
accordingly.

The updating is based on a compromise between the observation and current model
state. In a situation where the model is good but the observations are dominated by
measurement error, the state estimate should rely more on the model as opposed to
fitting the observations. On the other hand, if the model is incomplete the states should
rely more on the observations than the model. This trust in model versus observations
is balanced by the Kalman gain, which is dependent on the magnitude of system noise
σω and observation noise �.

The initial conditions of the state and state covariance (x̂i(1|0) and P̂ i(1|0)) need to
be specified for the Kalman filtering algorithm. The initial state can either be fixed or
included in the likelihood function, whereas P̂ i(1|0) for this implementation has been
chosen to be estimated as the integral of the Wiener process and system dynamics over
the first sample interval in accordance with the method used in [11].

A key feature of the SDE approach to population modelling is the ability to give
improved estimates of the system states given the individual parameters and also to
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provide confidence bands for the states. Confidence bands at a timepoint t are directly
given by the estimated state covariance matrix P̂ i(t |...) from the EKF, where t can be
both at or between measurements. There are four types of state and state covariance
estimates available when using the EKF, each of which differs in the way data is used.
The four types are:

• Simulation estimate: x̂i( j |0), P̂ i( j |0)

Provides an estimate of the state evolution for a repeated experiment, without
updating based on measurements. This is an ODE-like estimate, but it also yields
a confidence band for the state evolution.

• Prediction estimate: x̂i( j | j−1), P̂ i( j | j−1)

The prediction is used here to give the conditional density for the next observation
at time ti j given the observations up to ti( j | j−1).

• Filtering estimate: x̂i( j | j), P̂ i( j | j)

Best estimate at time ti j given the observations up to time ti j .

• Smoothing estimate: x̂i( j |N ), P̂ i( j |N )

Optimal estimate at time ti j utilizing all observations both prior to and after time
ti j .

For a conventional ODE model the state is found by the simulation estimate, which
is entirely given by the (possibly ML-estimated) initial state of the system. The covari-
ance matrix for the states is 0 since no system noise is estimated. In other words the
ODE model assumes that a new experiment will yield an identical outcome of the
underlying system apart from observed measurement noise. By moving to SDEs, sys-
tem noise is separated from measurement noise, thereby enabling the model to provide
confidence bands for the realization of the states in a new experiment. By improving
the model, the confidence bands for the states will become narrower and theoretically
be zero if the true model is used and no random fluctuations in system states are
present.

With SDEs three new types of estimates, apart from the simulation estimate, also
become available. In the present setup the prediction estimate is used to give con-
ditional Gaussian densities to form the likelihood function. The filter estimate is the
best obtainable state estimate during the experiment, where the subsequent observa-
tions are not present. The third type of state estimate is the smoothed estimate. This
provides the optimal state and state covariance estimate (x̂i( j |N ) and P̂ i( j |N )) based
on all obtained observations, both prior and subsequent to the time of interest. The
smoothed estimate is therefore often the natural estimate of choice when studying the
behavior of the system in post hoc analysis.

Software implementation

The estimation algorithm outlined in the previous section has been implemented in a
Matlab framework called population stochastic modelling (PSM). It is intended that
this should work as a software prototype, in order to make further experimentation
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with the model setup easily available. The program may be obtained by addressing an
email to the corresponding author.

Features

The implementation is designed to handle any non-linear mixed effects models using
SDEs based on the general model definition in the previous section. The model spec-
ification is achieved through a set of Matlab functions written in m-files. A complete
model specification consists of state dynamics f and diffusion term magnitude σω,
output function h and uncertainty �, derivatives of state d f /dt and output dh/dt ,
initial state x0, second stage model g and finally a variance function � for the random
effects. Each function is prepared to use all input arguments as specified by the model
definition.

The implementation has been made in two versions. The first is able to handle the
general non-linear case, and is thus based on the use of an algorithm for solving the
differential equations in the EKF. It has been chosen to useode15s, which is a Matlab
built-in ODE solver. The second version is only able to solve linear systems, which
will run significantly faster since it is based on an explicit solution of the differential
equations.

The population parameters are estimated by maximizing of the population likeli-
hood function given in Eq. 15. Maximization is performed using a publicly available
Matlab implementation ucminf of a gradient search BFGS method with soft-line
search and trust-region type monitoring of step length [13]. For additional perfor-
mance it is possible to guide the optimization by providing an initial guess and bound-
aries for the parameters. The implementation is also able to assess parameter variance
and correlation based on a numerical approximation of the Hessian of the likelihood
functions [14].

Implementation details

In the evaluation of the population likelihood function it is necessary to evaluate the
individual a posteriori log-likelihood function for each individual at its optimum,
since a Taylor expansion is made around this point. Hence for one evaluation of the
population likelihood function an optimization must be performed on each individual
likelihood function. These optimizations only share the given population parameters
and are therefore evaluated independently. This observation can be used to employ
the use of parallel computing, where the individual optimizations are distributed to a
number of CPUs.

Matlab does not have the option for parallel computing by default1, but this can be
made possible using external software. MatlabMPI2 is a package developed at MIT
and it enables parallel computing in Matlab by creating a set of scripts that is executed

1 A distributed toolbox for Matlab is under development by The MathWorks.
2 J. Kepner, Parallel Programming with MatlabMPI, http://www.ll.mit.edu/MatlabMPI/, 2006.
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Table 1 Computation times using parallel computing

CPUs Time (s) Reduced to (%) CPU-time per individual (s) Overhead per CPU (%)

1 serial 241.8 100.0 12.1 −−
1 242.4 100.2 12.1 0.2

2 128.3 53.0 12.8 5.8

3 101.7 42.0 15.3 20.7

4 72.0 29.7 14.4 16.0

5 66.0 27.3 16.5 26.7

10 50.0 20.6 25.0 51.6

in separate processes. MatlabMPI uses message passing but it was found faster to pass
all data and parameters through files. The individual calculation extracts its unique
part of data by using its identifier number. The individual log-likelihood result is
passed back into the leader thread by proper message passing to avoid deadlocks or
race conditions. A shared memory environment is beneficial as message passing is
implemented through shared files.

In order to illustrate the effect of parallel computation for population modelling,
a model was setup and estimated on the basis of simulated data for 20 subjects. The
resulting computation time is found in Table 1 and it can be seen that the computation
time is reduced to a little less than one-fifth of the original using five CPUs. For this
example overhead begins to dominate when using more than five CPUs, however for
more computationally intensive models, the benefit of adding more CPUs is expected
to be less affected by overhead.

For non-linear models a significant part of the computation time is spent in the
prediction part of the Extended Kalman Filter when solving the differential system
equations. The prediction includes both state and state covariance, and these differen-
tial equations are coupled and must therefore be solved simultaneously. To account for
this coupling, the two prediction equations have been collected into one system with a
combined input vector Z which stores both the states and the covariance matrix. The
symmetry in the covariance matrix is exploited so only the upper part is transferred,
i.e.

Z =
(

Z1
Z2

)
=

(
x̂t |k

U (P t |k)

)
(17)

where U () is a column vector containing the upper matrix. Conversion to the vector
Z is then used in conjunction with ode15s and the output is converted back into a
state vector and covariance matrix. The use of a single vector Z complies with the
Matlab standard conventions for ODE solving algorithms, and the chosen algorithm
ode15smay thus easily be substituted to suit the dynamic properties of a given model.
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Validation of implementation

The implementation of PSM has been validated with CTSM and NONMEM. The com-
parison with CTSM has been used to verify correct implementation of the Kalman
Filter and Extended Kalman Filter by comparison with CTSM’s individual likelihood
function. The comparison was based on a model using SDEs and showed identical
outcomes from the two programs.

The comparison with NONMEM was done with a model based on ODEs in order to
verify the population likelihood function. The comparison showed that PSM produces
identical population parameter estimates and also identical estimates of the individual
random effects parameters for four simulated data sets containing 2, 4, 10 and 20
subjects.

A final validation with NONMEM was done on the objective function value. The
NONMEM objective function (lN M ) is advertised as −2 log L but in fact it lacks a con-
stant equal to the likelihood of the data. The PSM objective function (lPSM) is − log L
as seen in Eq. 16 and the relation thereby becomes lN M = 2·lPSM−log(2π)·∑ ni . This
relation between the two objective functions was found to hold for all the estimated
models on the four simulated data sets, and this demonstrates that the formulations of
the objective functions are equivalent.

Applications

The general approach of including SDEs in the NLME model as implemented in PSM
has a potential of improving model development and performance for a wide range
of PK/PD modelling situations, as has been discussed previously. The applications to
illustrate the functionality of PSM in the present paper have been chosen to focus on
a feature inherent to the new approach. The SDEs enable a simple way to estimate
unknown inputs and time-varying parameters by modelling these as a random walk.
The technique works for both linear and non-linear problems, and this will be illus-
trated in the following by two models to estimate the insulin secretion rate and liver
extraction rate.

Data

The data originates from a double-blind, placebo-controlled, randomized crossover
study with a duration of 24 h starting at 8 a.m. in the morning. Thirteen patients (5
women and 8 men) with type II diabetes were examined. Their age given as mean±1
standard deviation was 56.4 ± 9.2 years, BMI was 31.2 ± 3.6 kg/m2 and the duration
of diabetes was 3.0 ± 2.6 years (range 5 months to 8 years) [15].

C-peptide and insulin measurements will be used for analysis in this paper, and only
the placebo data is used. This is done to focus the presented analysis on two types of
application of the NLME model which are only possible by extending it with SDEs,
namely stochastic deconvolution of an unknown input and continuous tracking of the
behavior of a parameter.
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One of the patients was discarded since the measurement times were delayed com-
pared to the rest. The data used thus consists of 24-h C-peptide and insulin profiles
for 12 individuals, see Fig. 1.

The subjects were sampled 35 times during the 24 h at varying time intervals, mainly
concentrated after meal times. A total of 3 standard meals were given at 8 a.m., noon
and 6 p.m., each to be finished within 20 min. These times correspond to 0, 240 and
600 min after the study was initiated, see Fig. 2.

Deconvolution

The first example of application will illustrate how the model setup can be used for
deconvolution of the insulin secretion rate (ISR) based on a standard two-compartment
linear model for C-peptide measurements [16]. It is known that C-peptide and insulin
are secreted in equi-molar amounts, and this fact is used to construct the model. The
basic idea is to model the secretion rate into the central compartment as a pure random
walk (Wiener process) and then estimate ISR as the realization of this random walk
using the EKF to provide a smoothed estimate.

The modelling of the ISR as a random walk actually means that no model is given
for the ISR, and therefore it is instead estimated entirely based on the data. For a
linear system this technique resembles a deconvolution, but it will provide a more
smooth estimate compared to an ordinary deconvolution. This is because the EKF sep-
arates system noise from measurement noise, where the system noise for this model
is assumed to be the ISR of interest. The extent of smoothing is determined by the
maximum likelihood estimated σISR, the magnitude parameter for the random walk
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Fig. 3 Two-compartment model used for estimation of ISR

0 240 600 840 1140 1440
0

100

200

pm
ol

/L

ISR

± SD

0 240 600 840 1140 1440
0

100

200

pm
ol

/L

Time (min)

Fig. 4 Smoothed estimate of ISR for individual 1 and 2

for ISR, which influences the Kalman gain on increments of the random walk. A larger
magnitude leads to a more fluctuating random walk with larger increments and vice
versa for a smaller magnitude. The resulting estimate of the random walk and thereby
the ISR is thus optimal in a likelihood sense, since the EKF as mentioned earlier has
been shown to yield the minimum variance state estimate for a linear system.

The deconvolution setup requires three states, namely a central compartment state
C1 modelling the measured C-peptide concentration, a peripheral compartment state
C2, and a state ISR for the random walk. This gives the state vector x = [ C1 C2 ISR ]T .
The C-peptide kinetic parameters k1, k2, ke are set equal to the Van Cauter estimates
found in [17].

The C-peptide measurement error is assumed to be additive Gaussian white noise
with variance �. The model states are constrained to steady state at t = 0 given an

initial individually estimated concentration Ci in C1, that is x0 = [
Ci

k1
k2 Ci keCi

]T

and Ci = C0
1 exp η, η ∈ N (0,�C1). The state equation for the model is shown in

Eq. 18

dx =
⎡
⎣

−(k1 + ke) k2 1
k1 −k2 0
0 0 0

⎤
⎦ x dt + diag

⎡
⎣

0
0

σISR

⎤
⎦ dω (18)

and the measurement equation is simply y = C1 + ε, where ε ∈ N (0, �). The
ML estimated population parameters are C0

1 , �, σISR and �C0
1

and based on these an
optimal estimate of ISR can be found by using the Kalman smoothing algorithm.
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Fig. 5 Dynamics of the combined model for estimation of insulin secretion rate and liver extraction rate

Figure 4 shows the smoothed estimate of ISR for the first two individuals together
with a ±1 standard deviation band. The assumption of steady state in the beginning
defines the initial level of ISR based on C0

1 and this appears appropriate.

State-estimation

The second example of application goes to illustrate how the model setup may be used
for state-estimation in non-linear systems. The method is also sometimes referred to
as parameter tracking, when the state represents a parameter, which is suspected of
having some time-varying behavior. Although non-linear state-estimation is funda-
mentally different from deconvolution, which only applies to linear systems, it can be
performed with SDEs in basically the same way as the approach for deconvolution
presented in the first example of application.

The aim is to estimate the dynamic liver extraction rate, which represents the frac-
tion of insulin that is absorbed by the liver. This fraction is often modelled as a constant
to simplify statistical models, although it is known to be time-varying. As previously
done the insulin secretion rate is estimated based on the information in the C-peptide
measurements and then used as input into a one-compartment insulin model. The state
I models the measured insulin concentration in the compartment and the insulin elim-
ination is set to ke,I = 0.355 min−1. This value has been reported for a similar study,
also on type II diabetic patients [18]. By having a fixed elimination rate and ISR given
from the C-peptide part of the data, the information in the insulin measurement can
be used to estimate the liver extraction. The fraction which passes through the liver
is modelled by a state F , and the input into the insulin compartment is thus F · ISR
making the model non-linear in the states. The final layout of the model is shown in
Fig. 5. The layout is identical to the layout first proposed in [19], where it is shown
that by assuming a constant liver extraction rate it is possible to estimate the kinetic
parameters and a piecewise constant ISR.

In an initial model F was modelled directly as a random walk in the same way as ISR.
The estimation of the model returned a very low estimate of the insulin measurement
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standard deviation at only 0.01 pmol/l. This is an unrealistically small value and indi-
cates a problem with separation of noise components, since virtually all the variation
in the insulin measurements thereby is assumed to originate from the fluctuations of
the liver extraction.

This problem can be solved by imposing further smoothing to the state-estimation
by choosing to model the derivative of F as a random walk instead of directly F as
before. This is achieved by introducing a new state named X as shown in Eq. 19 and
20

d F

dt
= X (19)

d X = σX dω (20)

where ω is a Wiener process. The change in the model for F causes the increments of
the derivative of F to be penalized by the Wiener noise gain σ instead of the incre-
ments of F directly. The result is a less flexible model for F where fluctuations are
further constrained, and the modification is easily implemented using the flexibility
made available by the stochastic state space approach. In total the model contains six
states, namely x = [C1 C2 I ISR F X ]T , which are all estimated simultaneously by
the Extended Kalman Filter using the two-dimensional measurements with C-peptide
and insulin. The system equations are shown in Eq. 21.

dx =

⎡
⎢⎢⎢⎢⎢⎢⎣

−(k1 + ke)C1 + k2C2 + I S R
k1C1 − k2C2
−ke,I I + F · I S R
0
X
0

⎤
⎥⎥⎥⎥⎥⎥⎦

dt + diag

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0

σISR
0

σX

⎤
⎥⎥⎥⎥⎥⎥⎦

dω (21)

The estimation of the population parameters in the new model with a constrained
model for F results in a better separation of noise. The standard deviation for the
insulin secretion rate is estimated at a satisfactory level of 19.8pmol/l.

As could be expected, the model finds an ISR which is almost identical to the one
found using just a C-peptide deconvolution model, since the information in the added
insulin measurements is used to estimate the liver extraction. The smoothed estimate
of the fraction of insulin passing the liver F is shown in Fig. 6 for individual 1 and 2.
The plots illustrate that the proportion sent through the liver, F , is below one for the
entire time interval as it naturally should be. This also holds for 8 out of the remaining
10 individuals. For the two last individuals F varies between 0.5 and 1.8. This is
however not of great concern, because F and ke,I are correlated and it is thus probably
just indicating that ke,I for this particular individual is set too high.
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Fig. 6 Smoothed fraction of insulin passing the liver ±1 SD for individual 1 and 2

Discussion

By the presented software implementation PSM, we have shown that it is possible to
develop a general purpose PK/PD population modelling tool that is able to handle the
extra functionality made available by using SDEs in NLME models. The implemen-
tation opens up for the possibility to easily make further experiments with the model
setup to allow for accumulation of more knowledge about the modelling approach.

It is important to emphasize that the software implementation is to be considered
a prototype, which should only be used on research level. A necessary step to make it
more widely usable is to move to another programming language. This implementation
has been done in Matlab, which is ideal for numerical implementations, but it lacks
in speed and parallel computing options. The standard within scientific programming
today is Fortran, and this is also an obvious choice here due to its efficient handling
of numerical computations and linear algebra calculations. Another advantage of For-
tran is the accessibility of modules already available, such as algorithms for numerical
optimization and ODE solvers.

The optimal platform for a future implementation is a shared memory system.
Shared memory parallelism can be implemented easily in Fortran using the OpenMP3

application program interface. OpenMP supports multi-platform shared-memory par-
allel programming in Fortran on all architectures, including Unix and Windows plat-
forms. OpenMP is a scalable model that gives a flexible interface for developing a
parallel application for platforms ranging from the desktop to the supercomputer and
it supports parallelism through meta tags that will make portability to single CPU,
multi-core CPU, and shared-memory multiprocessor (SMP) units simple. Some com-
pilers are also able to create parallel calculations by automatically analyzing the code,
but the largest improvements are achieved using manual parallelization.

3 Further details may be found at www.openmp.org.
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The present paper has illustrated how parallelization introduced at the individual
minimizations of the population likelihood function has a strong potential of reducing
the estimation time for a future final software program when dealing with data con-
taining a large number of individuals. It can also be argued to introduce parallelism at
an even higher level in the gradient calculation of the population likelihood function.
This would generally be advantageous for models where the number of population
parameters exceeds the number of individuals in data.

The first example of application in this paper demonstrated how the NLME model
can be used for deconvolution of ISR by introducing SDEs. Although the estimation
of ISR using SDEs is loosely denoted deconvolution, it is in fact not strictly speaking
deconvolution but instead a probabilistic description of an unknown input, which is
modelled as the realization of a stochastic process. Pure deterministic deconvolution
using ODEs for the model shown in Fig. 3 will estimate ISR at each measurement to
be equal to the rate giving the ‘missing’ amount in the central C-peptide compartment
C1. With the SDE approach the measurement noise on C-peptide is taken into account
by the Kalman filter, which yields a minimal variance estimate of the states resulting
in a more smooth estimate of ISR where the effect of noise is reduced.

Deconvolution based on noisy data is generally an ill-posed problem, meaning that
even small perturbations in data lead to significant changes in the estimated solution
[20]. The problem has been addressed by existing software by applying various kinds
of regularization techniques to constrain the solution. An example is WinNonlin [21],
which is a standard PK/PD software solution that can also be used for deconvolution.
The program addresses the problem of deconvolution by introducing a smoothness
factor and as a consequence it is simply left up to personal choice and preference of
the user to specify the level of smoothing. An improved solution can be found using
WinStoDec presented by [22], which is based on stochastic deconvolution and can
be used for linear time-invariant systems [23]. It has been shown by [24] that the
stochastic deconvolution approach is equivalent to the SDE approach presented here,
which is furthermore by nature also able to handle non-linear time-varying systems,
as has been demonstrated with the state-estimation approach in the second example
of application presented here.

In conclusion, a fully functional prototype tool named PSM for estimation of NLME
models based on SDEs has been implemented in Matlab and validated. The use of par-
allelization in the implementation has demonstrated a strong potential of reducing com-
putation times in future implementations in a faster programming language. Finally
two examples of application concerning insulin modelling demonstrated the possibil-
ity for deconvolution and non-linear parameter tracking facilitated by the extension
of the NLME model to use SDEs.
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Appendix: Approximation of population likelihood function

The population likelihood function for the NLME model with SDE’s is defined in Eq.
13 as

L(θ ,�, σω,�) =
N∏

i=1

∫
exp(li )dηi (22)

where li is the individual a posteriori log-likelihood function. In most cases the integral
cannot be evaluated analytically. For a general evaluation the individual a posteriori
likelihood function can be approximated by a second order Taylor series expansion of
li around the value η̂i of the individual random effects parameter which maximizes li .
It follows that

li ≈ li + ∇T li (ηi − η̂i ) + 1

2
(ηi − η̂i )

T 	li (ηi − η̂i ) (23)

≈ li + 1

2
(ηi − η̂i )

T 	li (ηi − η̂i ) (24)

since ∇li = 0 at η̂i . Based on the approximation in Eq. 24 the integral in Eq. 22 can
now be evaluated by moving constants such that the integral is over a multi-variate
Gaussian density with mean η̂i and variance (−	li )−1. This integral is equal to one
and the result is

∫
Li dηi ≈

∫
Li · exp

(
−1

2
(ηi − η̂i )

T (−	li )(ηi − η̂i )

)
dηi (25)

≈ Li

∣∣∣∣
2π

−	li

∣∣∣∣
1
2
∫ ∣∣∣∣

2π

−	li

∣∣∣∣
− 1

2

exp

(
−1

2
(ηi − η̂i )

T (−	li )(ηi − η̂i )

)
dηi

(26)

≈ Li

∣∣∣∣
2π

−	li

∣∣∣∣
1
2 · 1 (27)

≈ Li

∣∣∣∣
−	li
2π

∣∣∣∣
− 1

2

(28)

where Li = exp(li ). The step in Eq. 28 is done to avoid a matrix inversion of the
Hessian. By combining Eq. 22 Eq. 28 the population log-likelihood function can now
be approximated by

L(θ,�, σω,�) ≈
N∏

i=1

∣∣∣∣
−	li
2π

∣∣∣∣
− 1

2

exp(li )
∣∣∣
η̂i

. (29)
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