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Objectives

Analyze multi-level models of the glucose regulatory
system to identify relevant variables for control

Develop closed-loop glucose control schemes to
achieve homeostasis in T1IDM patients using multi-
level information



Artificial pancreas

CGMS can be coupled with CIIP to
create a closed-loop artificial pancreas

Closed-loop control algorithms
automatically adjust insulin infusion
rates to achieve homeostasis

Disturbances

“Measured” > Meal

Non-measured - Stress, physical
activities, biological rhythms,
medicaments
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Multi-level model

. Low level model
- A physiological based PK-PD model with 50
ordinary differential equations considers:
~ The kinetics of GLUT2, GLUT3, and GLUT4
— The intracellular conversion of glucose and
glycogen in liver
= The dynamics of the insulin signaling pathway

. High level model
- The glucose transit through the stomach and
Intestine
— Insulin kinetics



Multi-level model

. Model subsystems
- Insulin and glucagon transition
- Glucagon signaling pathway
- Insulin signaling pathway
— Glucose mobilization in liver
- Glucose uptake
- Feedback glucagon and insulin infusion
rates
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Glucose uptake

The glucose transporter is modelled by

dx

—dio — kzgx'2"1 — (k13 + lg4)xr2n0 - kzgxglo + K,
d m

% = —KkagX3, + (K13 + Iga) X35,

The insulin effect on the transporter is given by

effect = 11(0.2xT, + 0.8x7)/100,
| g4 = (g =t i) k23 [EffECt],
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Nonlinear model 1(L)
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Nonlinear model 3 (H)
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Factors affecting blood glucose

regulation
Nonlinear behaviour

Meal disturbances
— Variable composition
— Estimation errors

Time-varying dynamics

— Circadian fluctuation (e.g. Insulin sensitivity)
— Exercise (different intensity levels)

- Stress

Lag in the appearance of insulin in blood

Time delay in the subcutaneous glucose sensing



Insulin sensitivity
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* Are insulin sensitivity changes responsible of this behaviour?

- Can a pre-programmed insulin infusion compensate this behaviour?




Insulin Infusion pattern
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Conclusions

Estimation of cellular information as feedback signal
reduce the hypoglycaemic events.

Insulin sensitivity changes can be compensated.

Intracellular information can be used as part of closed-
loop glucose control.

A comprehensive understanding of the causes and
mechanisms underlying glucose regulation Is the key
to develop an artificial pancreas.



