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ABSTRACT

Motivation: Scale-free networks have had a profound impact in

Biology. Network theory is now used routinely to visualize, navigate

through, and help understand gene networks, protein–protein

interactions, regulatory networks and metabolic pathways. Here

we analyse the numerical rather than topological properties of

biological networks and focus on the study of kinetic rate constants

within pathways.

Results: We have analysed all current entries in the BioModels

database and show that the kinetic rate parameters follow Benford’s

law closely. The cumulative histogram plot reveals an underlying

power-law. This implies that these data are scale-invariant, thus

placing biological network topology and their chemistry on an

equivalent ‘scale-free’ power-law foundation.

Contact: Richard.Morris@bbsrc.ac.uk

1 INTRODUCTION

An analysis of the world-wide-web by Barabási and Albert

(1999) led to the, perhaps surprising, finding that connectivity

in such networks is not uniformly distributed but showed the

emergence of ‘hubs’. This elegant piece of work and subsequent

efforts by Barabási and coworkers and many others on scaling,

robustness, power-laws and growth processes enjoyed immedi-

ate impact. The mathematical beauty and elegance of networks

and graph theory finding renewed interest and delivering often

spectacular results from statistical mechanics, gene networks

and ecosystems, through to social sciences and politics.
Amaral et al. (2000) studied a variety of diverse real-world

networks and presented evidence of the occurrence of three

classes of small-world networks: (i) scale-free, (ii) broad-scale

and (iii) single-scale networks. The latter two have constraints

limiting the addition of new nodes and the nature of these

constraints influences the emergence of the different classes.
Power-laws have been studied for a long time and although

these recent network discoveries are perhaps not as astonishing

as sometimes claimed, the research of Barabási and others

has been highly influential and dramatically changed the way

in which we now view and try to understand complex

systems. The topological features of scale-free networks

and the remarkable consequences thereof have had a signifi-

cant impact in Biology, especially on the understanding

of protein–protein interactions, regulatory networks and

metabolic pathways, and the interplay between parts that has

led to the development of Systems Biology.
In this manuscript, we discuss another scale-invariant

property that relates directly to the numerical values that one

associates with metabolic and regulatory networks. We show

that the first-digit distribution of the kinetic constants follows

Benford’s law and furthermore that a power-law underlies

the data.
In 1881, the astronomer Simon Newcomb noticed that the

first pages of a book of logarithms showed higher usage than

the later pages. Perhaps, his surprising conclusion was that in a

table of physical constants, numbers are more likely to begin

with a smaller rather than a larger digit. Newcomb proposed a

logarithmic law to describe the frequency of the digits. This

work was published under the title ‘Note on the Frequency of

Use of the Different Digits in Natural Numbers’, Newcomb

(1881). In 1938, this phenomenon was rediscovered by physicist

Frank Benford (Benford, 1938), who based his observation

similar to Newcomb on usage of logarithm books and came up

with the same logarithmic equation for the leading digit

distribution,

PðdÞ ¼ log10ð1þ 1=dÞ: ð1Þ

P(d) denotes the probability of observing d as the leading digit

of a number. The logarithmic base reflects the base of the

number system one is working with. This first-digit phenom-

enon and the resulting counter-intuitive fact that in real life

data there is a 30% probability that the first digit is a one which

is now known as Benford’s law. Benford himself put his

observation to the test and gathered many diverse datasets with

many thousands of samples to validate his argument. Benford’s

law can be generalized to a sequence of digits and can be shown

to follow the same equation, thus introducing another

unexpected effect: the digits in sequences become dependent

on the previous digits. For instance, the probability of the first

two digits being 1 and 5 is pð15Þ ¼ log10ð1þ 1=15Þ ¼ 0:028 and

the probability for 5 and 5 is pð55Þ ¼ 0:008. So the probability

of the second digit being a 5 conditional on the first digit being

a 1 is pð5j1Þ ¼ pð15Þ=pð1Þ ¼ 0:093, whereas the conditional

probability of a 5 given a 2 as the first digit is 0.099. The

probability of the second digit being a 1 given the first digit is a

1 is 0.126 and the probability of the second digit being a 1 given

the first digit is a 5 is 0.106.
It has been shown that data are scale-invariant if and only if

they follow Benford’s law (Hill, 1996). Although the rigorous*To whom correspondence should be addressed.
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proof of Benford’s law is more involved and was shown for the
first time in 1996 (Hill, 1996) over a century after its first
observation and 50 years after its rediscovery, it can be

understood with intuitive arguments. When estimating a
parameter for which we have no prior knowledge, we would
expect the distribution of digits to remain the same regardless

of the choice of units. The insensitivity to units is, by definition,
a scale-invariant property which in turn implies the distribution
of digits will vary proportionately with magnitude, i.e. if we

have arrived at a number whose first digit is 1, we must increase
this number by 100% to change the first digit to a two. The
change from 2 to 3, requires only a 50% increase, 3 to 4 a 30%

increase, and so on. This introduces a logarithmic scale to the
distribution of significant digits.
Scale-free networks follow a power-law in terms of their

topology (connectivity) and scale-invariant data follow a
power-law with regard to the probability of digits or sequences

of digits. In this article, we demonstrate that biological pathway
data follow a power-law and are therefore scale-invariant.

2 RESULTS AND DISCUSSION

To evaluate the scale-invariance of enzyme kinetic data, we
downloaded all deposited models from the BioModels

Database (Le Novére et al., 2006), June version 2007, and
extracted all kinetic parameters. Although a number of

collections exist for kinetic data, the BioModels database has
the advantage of being a high-quality resource of manually-
curated and validated models for biological pathways. This

version of the BioModels database contains 113 validated
pathway entries with a total of 7684 reactions.
We analysed the distribution of first digits of the rate and

equilibrium constants, the result of which is plotted in Figure 1.
As may be observed, the curve follows Benford’s law closely.
Whenever Benford’s law holds, scaling the distribution will not

change the first-digit distribution and the data are said to be
scale-invariant.
An insufficient number of large networks have been

deposited in the BioModels database to evaluate this behaviour
on individual pathways in a statistically sound manner.
Nevertheless, this is a probablistic law and as such this

behaviour should be approximately valid for individual
biological networks. Indeed, an analysis over the larger
networks from the BioModels database, Figure 1B, shows

that this is the case. The degree with which these individual
pathways follow Benford’s law varies hugely as one might

expect for such small samples, they are, however, clearly non-
uniform and display a preference for smaller digits.
For distributions that have sufficient spread in logarithmic

space, i.e. vary over several orders of magnitude, we would
expect Benford’s law to hold and the data to be approximately
scale-invariant. A number of first digit distributions derived

from other biological databases are given in Table 1. The
lowers digits are often more frequent, however, there are also
large deviations from Benford’s law.

If we had to hazard a guess at estimating a kinetic rate
constant, which value or range would we choose and how
confident would we be in that estimate? With no further

knowledge all we know is that these parameters are positive and

cover many orders of magnitude. In setting up prior distribu-
tions, we can include this ignorance about the scale of the

parameters. If the scale of a number, x, is not known then it
makes sense to require that the prior distribution, p(x), that we
assign should not vary upon scaling,

pðxÞdx ¼ pðaxÞadx; ð2Þ

in which a is a positive multiplicative scale factor. This implies
that pðxÞ / 1=x, which results in a improper distribution known

as the Jeffreys prior (Jaynes, 2003). Another way of expressing
Jeffreys’ 1/x prior is that the probability over the logarithm of
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Fig. 1. The frequency, f(d), of the first significant digit, d, of kinetic

parameters plotted against the logarithmic law of Equation (1).

(A) shows all the kinetic data from the BioModels database, whereas

(B) shows data from large individual pathways (between 62 and 264

rate constants) extracted from the BioModels database.

Table 1. First digit distributions

Digit Benford k �G EB ADP MW

1 0.301 0.359 0.310 0.129 0.393 0.240

2 0.176 0.184 0.150 0.193 0.247 0.194

3 0.125 0.100 0.103 0.254 0.123 0.164

4 0.097 0.081 0.090 0.208 0.067 0.135

5 0.079 0.118 0.088 0.158 0.041 0.095

6 0.067 0.051 0.072 0.023 0.028 0.061

7 0.058 0.034 0.081 0.020 0.031 0.043

8 0.051 0.044 0.060 0.006 0.034 0.035

9 0.046 0.028 0.046 0.009 0.036 0.032

This table lists the first digit distributions for kinetic constants k (Le Novére et al.,

2006), free energies of unfolding �G (Kumar et al., 2006), experimental binding

energies EB (Puvanendrampillai and Mitchell, 2003), and the molecular weights

MW of proteins (Wu et al., 2006).
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x is constant, pðlogxÞ ¼ const. The probability of observing
d as the leading digit is therefore proportional to
logðdþ 1Þ � logðdÞ with a logarithmic base of 10 if we use the

decimal number system, log10ð1þ 1=dÞ. Benford’s law is thus a
consequence of scale-invariance and the process underlying the
extraction of the first digit. It can further be shown that scale-
invariance implies base-invariance and that these characteristics

lead to Benford’s law (Hill, 1995). We can conclude that a lack
of prior knowledge does not translate into a uniform
probability distribution. This result has implications for

parameter estimation and sampling strategies.
Rate constants have a finite range, so true scale-invariance

in the form of a log-uniform distribution will only ever be

approximately realized. A more sensible prior distribution to
assume is one which is uniform in logarithmic space with a
cutoff value around the diffusion limit or to introduce an
exponentially decaying distribution that defines the boundaries.

The distribution we observe for the rate constants from the
BioModels database resembles a Normal distribution in log
space, with a mean at �0.37 and a standard deviation of 2.06.

There are other definitions of scale-invariance, the most
popular being the requirement that a function of x, f(x),
scales with �a upon multiplication of x by �. A power-law is a

polynomial function which is scale-invariant, the log-uniform
distribution being a special case with a power-law exponent
of �1. A common technique to detect power-law behaviour is

to study the rank/frequency plot (cumulative histogram).
In Figure 2, we show the kinetic data from the BioModels
database in this double logarithmic plot and fit a straight line
via least squares. Such data are said to follow Zipf’s law or the

Pareto distribution which provides additional evidence for the
scale-invariant character of the data.
Based on the assumption that people unaware of Benford’s

law would tend to make up numbers randomly in a uniform
fashion, Hal Varian suggested in 1972 that the first-digit
phenomenon could be used to detect possible fraud in

economic data. Benford’s law is now used to analyse accounts,

insurance, and economic data to detect potential anomalies,

(Varian, 1972). Similarly, on close inspection of individual

biological pathway data, strong deviations from Benford’s law

may be observed in some cases, such as the BioModels entry

BIOMD0000000014. This model has a first digit distribution

consisting only of 1s (48%) and 5s (52%) and can be detected

immediately in a Benford plot. Many of these parameters were

estimated from an evolutionary optimization approach ignor-

ant of Benford’s law rather than experimentally determined.

The analysis of further deviations, reveals that digit distribu-

tions from parameter estimation programs tend to over-

populate numbers with a leading digit of 1 and 5, compared

to Benford’s law. These methods may produce useful approx-

imations but their precise values are not realistic. We suggest

that this is a consequence of the sampling strategy, i.e. the

distribution and the coarseness of discretization. As previously

shown, if the scale of the data is not known, then the log-

uniform distribution is a reasonable prior probability assign-

ment and it is from this distribution that should be sampled.
We have thus shown that kinetic data from biological

pathways follow Benford’s law closely and are therefore

approximately scale-invariant within a finite region. This

finding places the numerical data on a similar power-law

foundation that is thought to exist for the topology of

networks.
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Fig. 2. A cumulative histogram. This logarithmic plot shows the

number of data entries, Nðx4kÞ, above a given value, k, for the full

range of kinetic values. For power-laws this plot should produce a

straight line. A least squares fit (shown in dashed) determined the slope

to �0:254� 0:012.
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