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Abstract: One of the most challenging tasks in systems biology is parameter identification from experimental
data. In particular, if the available data are noisy, the resulting parameter uncertainty can be huge and should
be quantified. In this work, a set-based approach for parameter identification in discrete time models of
biochemical reaction networks from time series data is developed. The basic idea is to determine an outer
approximation to the set of parameters for which trajectories are consistent with the available data. In order
to approximate the set of consistent parameters (SCP) a feasibility problem is derived. This feasibility problem
is used to verify that complete parameter sets cannot contain consistent parameters. This method is very
appealing because instead of checking a finite number of distinct points, complete sets are analysed. With this
approach, model falsification simply corresponds to showing that the SCP is empty. Besides parameter
identification, a novel set-based method for experimental design is presented. This method yields reliable
predictions on the information content of future measurements also for the case of very limited a priori
knowledge and uncertain inputs. The properties of the method are presented using a discrete time model of
the MAP kinase cascade.
1 Introduction
Experimental design, parameter identification and model
falsification are important tasks one has to deal with when
constructing models of biological systems. Unfortunately,
there are several open problems. In parameter identification
and model falsification, sparse and noisy data sets as well as
non-convexity of the underlying optimisation problem are
challenging. For experimental design, classical approaches
require a detailed a priori knowledge about the parameter
values, which is typically not available at the beginning of
the modelling process, where experimental design can have
the largest impact.

In this paper, a set-based approach is presented to
overcome the problems related to noisy data and non-
convexity for a class of implicit non-linear discrete time
systems with bounded measurement error. The method is
based on the outer approximation of the set of consistent
parameters (SCP), the set of parameters consistent with all
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available experimental data. Additionally, the application of
the proposed approach to the analysis of biochemical
reaction networks is illustrated with a case study.

Classical parameter identification approaches are based on
the definition of the objective function and a successive
modification of the parameter vector to minimise the
objective and thus the difference between system and model
response [1]. For the modification of the parameters,
gradient-based methods are commonly applied. Hence,
these standard approaches check a finite number of distinct
points in parameter space. Even in cases where global
optimisation methods (e.g. clustering-methods, simulated
annealing or differential evolution) are employed [2–4] it
can usually not be guaranteed that the optimal parameter
vector is obtained with a finite number of iterations.

In particular for the task of model falsification, these
classical approaches are deficient as they check only a finite
number of points in parameter space. Even if exhaustive
119
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Monte-Carlo simulations [5] are employed, which use a
random sampling in the parameter space, only falsification
probabilities are obtained. In cases where no parameter
values are found for which the model reproduces the
experimental data, it cannot be guaranteed that no such
parameter values exist.

Furthermore, especially if the information content of the
measured data is small, the remaining parameter uncertainties
may be large and need to be quantified in order to evaluate
the quality of the obtained model. This can be done via a
practical identifiability analysis and the computation of the
confidence intervals. Parameter confidence intervals are
traditionally computed using the Fisher information matrix
[6] or bootstrapping methods [7]. The Fisher information
matrix is computed from the local sensitivity of the output
with respect to the parameters. Hence confidence intervals
computed using the Fisher information matrix are only
valid locally and moreover rely on the assumption that the
correct parameter is known, what is clearly not the case.
Bootstrapping methods, on the other hand, are non-
deterministic methods and use stochastic elements as well as
repeated simulations and repeated solving of the parameter
estimation problem. By this it is possible to account for non-
linearity of the identification problem. However, they require
detailed knowledge about measurement noise distributions
and noise properties (e.g. ergodicity). Hence, their application
is in some situations questionable as the prerequisites on the
noise are difficult to verify [8].

Another method to perform practical identifiability
analysis is based on the calculation of the SCP [8, 9]. The
main advantages are that the SCP can be used to derive
rigorous bounds on the parameter uncertainties. Secondly,
only boundedness of the noise has to be assumed.
Furthermore, in case the SCP is provided as a reduced
search area for conventional optimisation-based methods, a
tremendous speed-up to the parameter estimation is possible.

To compute the SCP, set-based methods have been
developed during the last decade [10]. In particular, Kieffer
and Walter [8] developed methodologies employing set
inversion, interval analysis and constraint propagation.
These methods work well if the system has a particular
structure, for example if it is cooperative [11, 12], or if the
dependency of the output on the parameters is known
explicitly. However, if the mapping is not known, the
results can get very conservative because of the strong
relaxation required by interval arithmetics. One method to
obtain good outer bounds for the SCP of systems of
ordinary differential equation has been developed by
Tucker et al. [13], which also uses constraint propagation.
Unfortunately, one basic assumption is that the derivatives
of the concentrations can be determined. For common
measurements techniques used in molecular biology, the
noise level typically prohibits the direct determination of
measurement derivatives.
0
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In the work of Küpfer et al. [9] a novel formulation of the
computation of the SCP as feasibility problem is proposed
and applied to compute infeasibility certificates for
complete regions in parameter space. The feasibility
problem is brought to a computationally efficient form by a
relaxation to a semidefinite program (SDP) [14]. Related
approaches have also been applied to perform global
sensitivity and uncertainty analysis for (bio-)chemical
reaction networks [15, 16].

The drawback of Küpfer’s approach is that only
information about the steady state of the system can be
employed for the parameter identification and that only
polynomial vector fields are considered. In this paper, we
extend the application of the earlier proposed methods to
perform parameter estimation for discrete time systems
with rational right-hand side for which measurements of
the time courses are available. The extension to time course
data is crucial and in parallel to this work a first method for
parameter identification and model discrimination has been
proposed by Borchers et al. [17], considering polynomial
vector fields. Additionally to the extensions on the
theoretical side also a more extensive algorithm than in [9]
is applied to approximate the SCP. The proposed
parameter identification method is directly applicable to the
model falsification problem by trying to establish emptiness
of the SCP.

Besides the improvement of the parameter identification
method, a first set-based experimental design method is
presented in this paper. The main goal of experimental design
is to select the most informative experiments for parameter
identification based on a priori knowledge [6, 18]. In this
work, we focus on removing the constraint that a good
estimate of the real parameters has to be available for selecting
the experiments. This can lead to wrong predictions of the
information content. Instead, it is assumed that only an a
priori consistent parameter set is known.

This problem has also been considered by Asprey and
Macchietto [19] who developed a robust experimental
design method based on the Fisher information matrix. In
contrast to their work, the experimental design approach
proposed here uses as design criterion the expected volume
of the SCP, a non-local measure. Furthermore, input
uncertainties are taken into account as they are common in
biological applications.

The remainder of the paper is structured as follows: in
Section 2, the problems of parameter identification and
model falsification are formulated and the theoretical
background as well as the applied algorithms are presented.
Section 3 contains an explanation of the experimental
design approach and the method for selecting the most
informative measurements. In Section 4, the developed
algorithms are illustrated by an application to the
experimental design, SCP estimation and model
falsification for a simple model of the MAP kinase cascade.
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Mathematical notation. The space of real symmetric n� n
matrices is denoted as Sn. I (a, b) denotes the integer set
{a, a þ 1, . . . , b}. The positive semidefiniteness of a
quadratic matrix X [ Sn is denoted X X 0 and the trace of
X by tr(X ).

2 Parameter identification and
model falsification
2.1 Problem statement

Consider an implicit non-linear discrete time dynamical
model for a biochemical reaction network given by the
system of implicit difference equations

S:
0 ¼ F (x(kþ1), x(k), u(k), p), x(0)

¼ x0

0 ¼ H (y(k), x(k), p)

(
(1)

where y(k) [ Rny is the output vector, x(k) [ Rnx the state
vector, u(k) [ Rnu the input vector at the kth time point
and p [ Rnp a constant parameter vector to be estimated.
In this paper, only rational functions F and H are
considered, but extensions to piecewise polynomial or
general smooth non-linear functions are possible [15].
Many modelling frameworks for biochemical reaction
networks rely exclusively on polynomial or rational
functions, which stem from the law of mass action, the
Michaelis–Menten mechanism or Hill-type reaction rates
with integer Hill coefficients. However, the approach
proposed in this paper is not applicable to generalised mass
action networks [20], which are a less commonly used
formalism to describe biochemical reaction networks.

Discrete time models of reaction networks arise from
discrete time modelling [21] or via time discretisation of
differential equation models [22]. The advantage of discrete
compared to continuous time models is the strictly
algebraic mapping from x(k) to x(kþ1).

We will assume that the input u(k) is known to be
contained in a compact set U (k) , Rnu . In addition, there
are constraints on the state variables, given by
x(k) [ X (k) , Rnx . Such constraints are often available from
conservation laws or maximal production rates for
individual chemical species.

The output of the system S is available through possibly
erroneous measurements. The measurements are given by

�y(k)
¼ y(k)

þ e(k), k [ I (0, N ) (2)

in which �y(k) [ Rny is the measured output, e(k) [ Rny the
unknown measurement error and N þ 1 the number of
measurement points. We assume that the measurement
error at each time point is known to be contained in a
known compact set E(k) , Rny . Then one can determine
T Syst. Biol., 2010, Vol. 4, Iss. 2, pp. 119–130
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the set

Y(k)
¼ {y [ Rny j 9e [ E(k) : �y(k)

¼ yþ e} (3)

which by construction contains the actual output y(k) of the
system at each time point k.

Let us introduce the notation y(0,k)
¼ (y(0), . . . , y(k)), k . 0,

for an output sequence of the modelS, and similarly u(0,k), x(0,k),
e(0,k) and �y(0,k) for input, state, measurement error and measured
output sequences, respectively. Moreover, we consider sets
of sequences denoted by U (0,k)

¼ {u(0,k)
ju(i) [ U (i), i ¼

0, . . . , k}, X (0,k)
¼ {x(0,k)

jx(i) [ X (i), i ¼ 0, . . . , k}, E(0,k)
¼

{e(0,k)
je(i) [ E(i), i ¼ 0, . . . , k} and Y(0,k)

¼ {y(0,k)
jy(i) [ Y(i),

i ¼ 0, . . . , k}.

We call a parameter vector p [ Rnp consistent with

(S, U (0,N�1), X (0,N ), Y(0,N )), if there exist u(0,N�1) [

U (0,N�1) and a solution x(0,N ) [ X (0,N ) of S such that
y(0,N ) [ Y(0,N ).

The first problem that is considered in this paper is to
compute the SCP.

Problem 1: Given the model S, the set of input sequences
U (0,N�1), the set of accessible states X (0,N ) and the set of
output sequences Y(0,N ), compute the set P� , Rnp of all
parameters which are consistent with (S, U(0,N�1), X (0,N ),
Y(0,N )).

For models of typical biochemical networks, the set P�
usually cannot be determined explicitly. In this work, we
focus on the computation of an outer approximation
�P� $ P�, which is guaranteed to contain all consistent
parameters. In this way, upper bounds on the parameter
uncertainty resulting from uncertain measurement data can
be obtained.

The second problem under consideration is the task of
model falsification. In the proposed framework, the model
falsification problem is simply the problem of proving that
the SCP is empty. If this is the case, the model structure S

cannot reproduce the experimental data for any values of
the parameters p.

Problem 2: Given the model S, U (0,N�1), X (0,N ) and Y(0,N ),
determine whether the (SCP) P� is empty or not.

2.2 Theoretical background

2.2.1 Infeasibility certificates: In this section a
method to compute an outer approximation to the SCP is
derived. For this purpose, we introduce the feasibility
121
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problem

(P):

find y(0,N ) [ Y(0,N ), x(0,N ) [ X (0,N )

u(0,N�1) [ U (0,N�1), p [ P

s.t.
F (x(kþ1), x(k), u(k), p) ¼ 0, k [ I (0, N � 1)

H (y(k), x(k), p) ¼ 0, k [ I (0, N )

8>>>><
>>>>:

This feasibility problem is in the following used for the
classification of a parameter test set P , Rnp . If (P) is
infeasible, P does not contain consistent parameters.
Unfortunately, (P) is a non-linear feasibility problem and in
general non-convex and therefore NP-hard to solve.

Küpfer et al. [9] proposed a framework for relaxing a
polynomial non-convex feasibility problem to a SDP [23],
and apply it to parameter estimation for steady-state
measurements. Owing to inherent convexity of SDPs, these
problems can be solved computationally efficiently, e.g. via
primal–dual interior point methods. In the following, we
present an approach which is based on the work of Küpfer
et al. [9], and extends this work to dynamical measurements.

For the relaxation of (P) to a SDP, the original feasibility
problem is first rewritten as a quadratic feasibility problem.
Therefore all equations and constraints appearing in (P)
have to be polynomial. If all sets are convex polytopes and
the functions F and H are polynomial in all of their
arguments, this is fulfilled. In case that F and/or H are
rational in their arguments, one can just multiply each
equation with its least common denominator. In order to
rewrite (P) as a quadratic problem, the vector j [ Rnj is
introduced, which consists of the monomials appearing in
F and H, that is

j ¼ (1, y(k)
iy

, x(k)
ix

, u(k)
iu

, pip
, y(k)

iy
x(k)

ix
, x(k)

ix
pip

, . . . )T (4)

for all iy [ I (1, ny), ix [ I (1, nx), iu [ I (1, nu),
ip [ I (1, np), k [ I (0, N ) [14]. Using the monomial
vector j, the equality constraints

F (x(kþ1), x(k), u(k), p) ¼ 0, k [ I (0, N � 1)

H (y(k), x(k), p) ¼ 0, k [ I (0, N )
(5)

can be transformed to

jTQij ¼ 0, i [ I (1, nxN þ ny(N þ 1)) (6)

with Qi [ Snj . Note that for higher order terms in j,
additional constraints have to be introduced. These lead to
additional equations of the form

jTQij ¼ 0, i [ I (nxN þ ny(N þ 1)þ 1, c) (7)
2
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where again Qi [ Snj and c is the total number of equality
constraints.

In order to simplify notation, Y(k), X (k), U (k) and P are
restricted to polyhedral sets. Then the constraints y(0,N ) [
Y(0,N ), x(0,N ) [ X (0,N ), u(0,N�1) [ U (0,N�1) and p [ P can
be written as

Bj � 0 (8)

with B [ Rnb�nj , and nb is the number of constraints that
jointly describe the sets Y(0,N ), X (0,N ), U (0,N�1) and P.

The original feasibility problem (P) can then be restated as

(QP) :

find j [ Rnj

subject to jTQij ¼ 0, i [ I (1, c)
Bj � 0
j1 ¼ 1

8>><
>>:

A relaxation to a SDP is classically done by introducing the
matrix X ¼ jjT and dropping the appearing non-convex
constraint rank (X ) ¼ 1 [24]. This leads to the relaxed
feasibility problem

(RP) :

find X [ Snj

subject to tr(Qi X ) ¼ 0, i [ I (1, c)
BX e1 � 0

BX BT
� 0

tr(e1eT
1 X ) ¼ 1

X X 0

8>>>>>><
>>>>>>:

with e1 ¼ (1, 0, . . . , 0)T [ Rnj . Note that the relaxation
may induce additional solutions. To reduce conservatism,
the redundant constraint BX BT

� 0 is added, which is
satisfied by every solution of (QP) and (P).

From (RP) one can derive the Lagrange dual problem

(DP) :

maximise n1

subject to e1l
T
1 B þ BTl1eT

1 þ BTl2B

þl3 þ n1e1eT
1 þ

Pc

i¼1

n2,iQi ¼ 0

l1 � 0, l2 � 0, l3 X 0

8>>>>><
>>>>>:

with the Lagrange multipliers l1 [ Rnb , l2 [ Snb ,
l3 [ Snj , n1 [ R and n2 [ Rc [16]. Using the dual
problem, one can obtain an infeasibility certificate for the
original problem.

Proposition 1: Let n�1 be the optimal cost of (DP). If
n�1 ¼ 1, then the original feasibility problem (P) is infeasible.

This follows directly from weak duality. Note that any
feasible solution to (DP) with n�1 . 0 implies that (DP) is
unbounded from above and Proposition 1 applies. We call
such a solution an inconsistency certificate, because it gives
IET Syst. Biol., 2010, Vol. 4, Iss. 2, pp. 119–130
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a guarantee that P does not contain consistent parameters.
For a more detailed discussion we refer to [16].

2.2.2 Reduction of computational complexity: The
advantage of the formulation using the Lagrange dual is that
the problem is convex and can be solved efficiently, as long as
the number of optimisation variables of (DP) is trackable.
However, the number of optimisation variables can be
problematic already for small-scale systems, if a large
number of measurement points needs to be considered.
The reason is that the number of optimisation variables no

is of order O2((ny þ nx þ nu þ np)N ) and thus grows
quadratically in the number of uncertain variables and the
number of time points. Furthermore, the dominating time
for solving these problems is the cost for solving a linear
program, which is of order O3(no) [25]. Thus the effort for
solving (DP) grows to the sixth order in the number of
uncertain variables and time steps. This is of relevance in
particular if the considered system or the number of
measurement points are large.

To reduce the computational effort with respect to the
number of time points, the original feasibility problem (P)
can be split. This is done by splitting the sequences of
input, state and output variables in subsequences, such that
several feasibility problems, each considering only a subset
of time points, are constructed.

The resulting feasibility problems are given by

(Pj):

find y(j,jþm) [ Y(j,jþm), x(j,jþm) [ X (j,jþm)

u(j,jþm�1) [ U (j,jþm�1), p [ P
s.t. F (x(kþ1), x(k), u(k), p) ¼ 0, k [ I (j, j þm� 1)

H (y(k), x(k), p) ¼ 0, k [ I (j, j þm)

8>>>><
>>>>:

where mþ 1, with 1 � m � N , is the number of sequential
measurement points taken into account in the optimisation
problem (Pj). Since a solution of (P) satisfies the
constraints where the complete sequences from 0 to N are
taken into account, we observe that if (P) is feasible, then
also (Pj), j ¼ 0, . . . , N � m, are feasible. Because the
reverse is in general false, considering (Pj), j ¼ 0, . . . ,
N � m, instead of (P) corresponds to a relaxation. Each

feasibility problem (Pj) can be relaxed to its dual problem
(DPj), as shown above for (P). Using the (DPj) we obtain:

Proposition 2: Let n�j,1 be the optimal cost of (DPj). If

sup{n�j,1 j 8j [ I (0, N � m)} ¼ 1

then the original feasibility problem (P) is infeasible.

This result follows again from weak duality.

Note that splitting the original problem along the time axis
solves only part of the problem, the question how m should to
chosen remains. As a rule of thumb, we suggest that with
T Syst. Biol., 2010, Vol. 4, Iss. 2, pp. 119–130
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increasing measurement uncertainties and a decreasing
number of measured variables, m should increase in order
to maintain a comparable estimation quality.

Remark 1: As the number of optimisation variables and the
computational complexity for solving (DPj), strongly
increases with the number of states and parameters of the
system, it is so far not possible to consider large-scale
systems. To change this, an in depth analysis of the
structure of (Pj) has to be performed in the future to reduce
the computation time.

2.3 SCP computation and model
falsification

Using the Lagrange dual problems (DPj), a certificate for the
inconsistency of (P), for a given set of parameters Pi, can be
computed. This allows us to exploit (DPj) to determine an
outer approximation �P� to the SCP P�. In this work, this
is done via a multi-dimensional bisection algorithm.

Therefore, at first an initial set P0, with P� # P0, has to
be determined. In many practical applications, finding a set
P0, with P� # P0, is not a restriction. A suitable set P0

can often be determined from physical insight into the
problem. For instance, in biochemical reaction networks, all
parameters are in general positive, hence already lower
bounds are found.

Starting from the initial set P0, a recursive bisection of P0

is performed. For each of the resulting subsets Pi arising in
the bisection, the corresponding dual problems (DPj)
are analysed and it is tried to compute inconsistency
certificates for Pi. Successful computation of an infeasibility
certificate assures that Pi does not intersect the SCP. If
no certificate can be obtained, Pi is bisected, and it is tried
to obtain an infeasibility certificate for the subsets. An
approximation �P� of the SCP is finally given by

�P� ¼ P0 n
[

I

PI (9)

where PI are the sets for which an inconsistency certificate
could be obtained.

The implementation of the algorithm is outlined as
follows:

Algorithm: P ¼ Analyze -P(U, X , Y, P)

1. If V (P) , e, return P ¼ P

2. Check feasibility of DPj(U, X , Y, P),
8j [ I (0, N � m)

3. If sup {n�1,j j j [ I (0, N � m)} ¼ 1, return P ¼ 0=

4. If sup {n�1,j j j [ I (0, N � m)} = 1:
123
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4.1. Bisection of P in P1 and P2

4.2. P1 ¼ Analyze-P(U, X , Y, P1)

4.3. P2 ¼ Analyze-P(U, X , Y, P2)

4.4. Return P ¼ P1 < P2

This algorithm is called recursively until the weighted
volume

V (P) ¼

ð
P

w(p) dp (10)

of a test set P is smaller than a tolerance e. Here, w(p) � 0 is
a weighting function used to assess the importance of
different regions in parameters space. For a more detailed
discussion of this bisection algorithm we refer to [10].
The algorithm is implemented in Matlab. For solving the
dual problems (DPj) the open source toolbox SeDuMi is
used [26].

For the task of model falsification also the above described
algorithm is applied. If P0 can be certified to be inconsistent,
that is the algorithm returns the empty set, we have a
guarantee that no parameter value p [ P0 exists for which
the model can fit the experimental data, and the model S
is falsified.

Remark 2: Applying the proposed method does not require
an a priori identifiability analysis. If parameters pj are not
identifiable from the data, the uncertainty in these
parameters will not decrease during SCP computation.
Hence, identifiability can be studied in a rigorous way
using the proposed algorithm.

3 Experimental design
3.1 Problem statement

Besides the evaluation and analysis of measured data, it is of
interest to predict the information content I of future
experiments to perform experimental design.

Generally, experimental design aims at determining an
experimental setup which allows gaining a maximal amount
of additional information with respect to parameter
identification [6] or model falsification [27]. In this paper,
we focus on the comparison of the expected information
content of different sets of input sequences U (0,N�1)

1 , . . . ,
U (0,N�1)

M , in which U (0,N�1)
i denotes a set of experimentally

feasible sequences of stimuli.

Compared to traditional approaches, it is not assumed that
a good approximation of the correct parameter is known, a
set-based information criterion is used and the fact that
inputs can not be forced precisely is taken into account.
4
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The last point is of particular relevance in biological
applications and experiments.

As a measure for information content of an experiment, we
consider the volumetric ratio of the falsified and the initial
parameter set. The proposed method is hence related to
D-optimal experimental design, where the determinate of
the covariance matrix is minimised [19].

The experimental design problem can be stated as follows:

Problem 3: Given the model S, an a priori consistent
parameter set P0 and M sets of feasible input sequences
U (0,N�1)

i , i [ I (1, M), determine the set of input
sequences U (0,N�1)

i� for which the expected information
content [I ](U (0,N�1)

i� , P0) is maximal.

3.2 Theoretical background

In order to select the most informative experiments, the
expected information content [I ](U (0,N�1)

i , P0) for a given
set of input sequences U (0,N�1)

i and an a priori consistent
parameter set P0 has to be defined. Therefore at first the
information content of a particular experiment (u(0,N�1),
�y(0,N )) is defined as,

I (p, u(0,N�1), e(0,N )) ¼
V (P0 n P�(u(0,N�1), �y(0,N )))

V (P0)
(11)

where V (P) is the weighted volume of a set as defined in
(10). This information content depends on the input
u(0,N�1) and, via the measured output �y(0,N ), on the system
parameter p and the measurement noise e(0,N ). The
expected information content [I ](p, u(0,N�1)) is obtained by
marginalisation over e(0,N ) according to the formula

[I ](p, u(0,N�1)) ¼

Ð
E(0,N ) I (p, u(0,N�1), e(0,N )) de

V (E(0,N ))
(12)

Because the parameter p and the precise input sequence
u(0,N�1) are unknown, further marginalisation using the a
priori information p [ P0 and the set of feasible input
sequences U(0,N�1)

i is performed. This yields

[I ](p, U (0,N�1)
i ) ¼

Ð
U(0,N�1)

i

I (p, u(0,N�1)) du(0,N�1)

V (U (0,N�1)
i )

(13)

the expected information content for a given set of input
sequences U(0,N�1) and the parameter p, and

[I ](P0, U (0,N�1)
i ) ¼

Ð
P0

[I ](p, U (0,N�1)
i ) dp

V (P0)
(14)

the expected information content for the feasible set of input
sequences U (0,N�1)

i and the set of a priori consistent
parameters P0.
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The information measure [I ](P0, U (0,N�1)
i ) can now be

used to determine the most informative set of input
sequences:

Proposition 3: Let [�I ](U (0,N�1)
i , P0) be the expected

information content for u [ U(0,N�1)
i . If

[�I ](U (0,N�1)
i� , P0) � [�I ](U (0,N�1)

i , P0) 8i [ I (1, M) (15)

then U (0,N�1)
i� is the maximal informative set of input

sequences with respect to parameter identification.

3.3 Approximation of information
measure

Unfortunately, neither the expected information content nor
the SCP for a given measurement P� can be computed,
therefore [I ](P0, U (0,N�1)

i ) is approximated by
[�I ](P0, U (0,N�1)

i ).

First of all, P� is outer approximated by �P� using the
algorithm presented in Section 2.3. This yields a lower
bound on the information content of a particular
measurement

�I (p, u(0,N�1)
i , e(0,N )) ¼

V (P0 n
�P�(u(0,N�1)

i , �y(0,N )))

V (P0)
(16)

Using this approximation, the integral defining the expected
information content [I ](U (0,N�1)

i , P0) is approximated via a
Monte-Carlo approach

[�I ](P0, U (0,N�1)
i ) ¼

1

spsuse

Xsp

j1¼1

Xsu

j2¼1

Xse

j3¼1

�I (pj1
, u(0,N�1)

j2
, e(0,N )

j3
)

(17)

in which pj1
, u(0,N�1)

j2
and e(0,N )

j3
are obtained by drawing

random samples from P0, U(0,N�1)
i and E(0,N ), respectively.

Basically, the system is simulated for different parameters,
input sequences and measurement errors. Based on these
artificial data, the SCP is determined and used to
approximate the expected information content.

It has to be emphasised that the quality of the
approximation of [�I ](U (0,N�1)

i , P0) strongly depends on sp,
su and se, the number of samples. These numbers should be
chosen sufficiently high, such that convergence of
[�I ](P0, U (0,N�1)

i ) is observed. Depending on the non-
linearity of the system, the required number of samples can
vary strongly.

Remark 3: In this work we focus on the sets themselves and
not on the probability distribution on the sets. Therefore no
weighting, corresponding to an a priori probability of the
measurements disturbances and the a priori consistent
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parameters is considered. An extension is straightforward
and uses the a priori probabilities of the different variables.

4 Example
In order to illustrate the proposed experimental design,
parameter identification and model falsification scheme, a
simple time discrete model of the MAP kinase cascade is
analysed, as illustrated in Fig. 1. The MAPK cascade plays
a crucial role in cell differentiation, proliferation and other
signal transduction pathways [28].

4.1 Model of the MAPK cascade

The model of the MAPK cascade considered here is build up
of the three different kinases MAPKKK, MAPKK and
MAPK which are unphosphorylated in the absence of
signal. Phosphorylation and associated activation is
performed by the upstream kinase. The difference
equations describing the system dynamics are

x(kþ1)
1 ¼ x(k)

1 þ DT v(kþ1)
1 , x(0)

1 ¼ x1,0

x(kþ1)
2 ¼ x(k)

2 þ DT v(kþ1)
2 , x(0)

2 ¼ x2,0

x(kþ1)
3 ¼ x(k)

3 þ DT v(kþ1)
3 , x(0)

3 ¼ x3,0

(18)

in which x1 is the concentration of MAPKKK-P, x2 is the
concentration of MAPKK-P and x3 is the concentration of
MAPK-P, all given in nM. Production and degradation of
the different kinases are not considered because these
happen on a slower timescale. Using mass conservation, the
unphosphorylated states have been eliminated to reduce the
model order.

In the following, it is distinguished between two different
models for the reaction fluxes:

Model 1: The first model of the MAPK cascade is a simple
chain of phosphorylations. M0 controls the activation of
MAPKKK, MAPKKK-P controls the activation of
MAPKK and so on. The reaction fluxes vi are modelled

Figure 1 Illustration of the MAP-kinase-cascade
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using mass-action kinetics

v(k)
1 ¼ k�1x(k)

1 � k1(M1 � x(k)
1 )u(k)

v(k)
2 ¼ k�2x(k)

2 � k2(M2 � x(k)
2 )x(k)

1

v(k)
3 ¼ k�3x(k)

3 � k3(M3 � x(k)
3 )x(k)

2

(19)

The concentration of the enzyme M0 can be interpreted as
the input to the system and is denoted by u.

Model 2: In the second model, besides the phosphorylation
cascade included in model 1, also a feedback inhibition
from MAPK-P onto the phosphorylation of MAPKKK is
considered (dashed line in Fig. 1). This yields the modified
reaction flux v1

v(k)
1 ¼ k�1x(k)

1 � k1(M1 � x(k)
1 )

u(k)

1þ k4x(k)
3

(20)

v2 and v3 are equivalent to those in model 1. The
modification of v1 yields a rational system which can be
transformed to a polynomial one by multiplication with the
denominator 1þ k4x(k)

3 , as explained in Section 2.2.1.

The two discrete time models are the time discretisation,
using an implicit Euler scheme, of the continuous time
models, describing the signalling pathways. The nominal
parameter values are given in Table 1.

In the following, model 1 is assumed to describe the
process and measurement data are generated using model
1. Besides parameter identification for model 1 a goal is to
falsify model 2.

It is assumed that the concentrations of all three
phosphorylated kinases are measurable

y(k)
¼ (x(k)

1 , x(k)
2 , x(k)

3 )T
þ e(k) (21)

in which e is the uniformly distributed measurement noise
with e [ E(0,N ) and

E(0,N )
¼ {e(0,N )

j � �e � e(k)
� �e, 8k [ I (0, N )} (22)
6
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in which �e ¼ (0:02, 100, 100)T nM. This absolute error
corresponds to a relative error of 15% and is realistic for
Western Blots which are typically used to measure protein
concentrations [29].

To reduce the problem size and to simplify the
visualisation of the result it is assumed that the ratios of
forward to backward reaction rates ri ¼ ki=k�i are known,
for instance from previously performed steady-state
measurements. Furthermore, the total amount of the
different kinases Mi is considered to be known. Therefore,
for both models just the absolute values, here k�i for i ¼ 1,
2, 3, are in the following considered as uncertain

p ¼ (k�1, k�2, k�3)T (23)

The initial set P0 for the estimation is set to

P0 ¼ {p [ R3
j 10�3

� pi � 10, 8i [ {1, 2, 3}} (24)

Thus initial parameter uncertainties of four orders of
magnitudes are considered. This is realistic for biological
systems.

4.2 Experimental design for the MAPK
cascade

Before any experiment is performed, the experiment with the
highest expected information content is selected using model
1 and the set of a priori consistent parameters P0.
Experimental constraints are that measurements can only
be performed at eight different points in time, N ¼ 7, and
only pulses in M0 with a nominal concentration of
1023 nM are feasible. The design variable is the pulse
length yielding

U (1,7)
i ¼ u(1,7)

u(k) [ Uh, 8k [ I (1, i),

u(k) [ Us, 8k [ I (i þ 1),

u(k) [ U l, 8k [ I (i þ 2, 7)

�������
8><
>:

9>=
>;, 8i ¼ I (1, 7)

(25)

in which U l and Uh denote the set of low and high enzyme
Table 1 Actual parameter values

Parameter Value Units Parameter Value Units

k1 5 1/(min nM) k21 0.05 1/min

k2 2 1/(min nM) k22 0.1 1/min

k3 0.001 1/(min nM) k23 0.1 1/min

k4 0.1 1/nM DT 4 min

M0 0.001 nM M1 3 nM

M2 1200 nM M3 1200 nM
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concentration

U l
¼ {uj0 � u � 0:1� 10�3}

Uh
¼ {uj0:9� 10�3

� u � 1:1� 10�3}
(26)

Here an input uncertainty of 1024 nM is considered, which
may arise from errors in pipettation, filtration and
measurement. Furthermore, uncertainty and inaccuracies in
the stimulus removal time are modelled by assuming the
input directly after switching off as unknown with the
bound u(iþ1) [ Us

¼ {uj0 � u � 1:1� 10�3}.

For all sets of input sequences U (1,7)
i , the expected

information content is computed. This is done according to
(17) using the explained Monte-Carlo method. For the
weighting function (10), used to determine the information
content of a single artificial measurement, w ¼

Q3
i¼1 p�1

i is
chosen. This enforces a uniform weighting on the
logarithmically scaled axes. The resulting expected
information content for the different input sequences is
depicted in Fig. 2. The highest expected information
content is obtained for a step length of six and the lowest
one for a step length of 1. For a step length of 6, the
expected amount of the parameter set P0 which can be
qualified as inconsistent is 97.7%. For a step of length one,
it is only 93.1%. The corresponding difference in the
expected size of the consistent parameters �P� is thus
approximately a factor of three.
Syst. Biol., 2010, Vol. 4, Iss. 2, pp. 119–130
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4.3 Parameter identification

For the examination of the properties of the developed
scheme for the SCP computation an artificial experiment is
now performed. To generate artificial measurement data,
model 1 is simulated using the nominal parameter values
and the nominal input sequence with a pulse length of six.
The resulting output is corrupted by random measurement
noise according to (22). The obtained artificial
experimental data are depicted in Fig. 3. The approximated
information content of this measurement is 0.994, thus
99.4% of P0 could be shown to be inconsistent with the
measurement data.

Figure 2 Expected information content [Ī] and
corresponding variance for the different set of input
sequences, U1

(1,7), . . . , U7
(1,7)

Discretisation DT ¼ 4 min (Table 1)
Figure 3 Artificial experimental data for MAPKKK-P, MAPKK-P and MAPK-P and corresponding error bounds
127
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For the artificial experimental data depicted in Fig. 3, the
SCP of model 1 is computed using the algorithm outlined in
Section 2. The obtained result is shown in Fig. 4.

In order to evaluate the effect of the experimental design
on the estimated SCP, also for the input with the lowest
expected information content an artificial experiment is
performed and the corresponding SCP approximated. The
results can be found in Fig. 5. Here 98.6% of P0 can be
ruled out and hence the volume of the remaining parameter
set consistent with the experimental data differs by a factor
of 2.4. This can be seen, also in case of extreme limited a
priori knowledge, the proposed experimental design
approach can help to select the most informative experiments.

Figure 4 Approximation �P� (light grey) of SCP and the
projections of �P� (dark grey) on the planes for the set of
input sequences with the highest expected information
content, U6

(1,7)

Figure 5 Approximation �P� (light grey) of SCP and the
projections of �P� (dark grey) on the planes using for the
set of input sequences with the lowest expected
information content, U1

(1,7)
8
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To rate the quality of the obtained outer approximation �P�

of the SCP using the proposed algorithm, 1000 plausible
points in parameter space are computed using a sampling-
based approach. A detailed analysis uncovers that 70.7% of
the hypercubes that �P� is built of contain at least one
parameter sample and thus �P� is a fairly good
approximation of the SCP.

Compared to the sampling-based approach the main
advantage of our method is that an outer approximation of
the SCP is obtained. Thus all consistent parameters have
to be contained in �P�. The traditional approach on the
other hand yields an inner approximation of the SCP and
important solutions can be missed. The computation time
of both approaches is comparable for this example.

4.4 Model falsification

In the previous subsections, it has been shown how the
proposed method can be applied for SCP computation. In
this section the focus lies on the falsification of models.
Therefore for model 2 the SCP is computed using the
artificial experimental data shown in Fig. 3, which are
obtained by simulating model 1.

This computation takes here only 2 min until the SCP-
computation algorithm returns that �P� is empty. Hence, no
parameter in the considered a priori consistent parameter
set P0 can reproduce the measured dynamics within the
measurement error bounds. Thus model 2 is falsified.

Compared to standard algorithms which sample the set P0

the computational effort is small. Additionally and even
more important, it can be guaranteed that no consistent
parametrisation of model 2 exists. Standard algorithms just
provide a falsification probability.

5 Conclusions
In this paper an approach for parameter identification, model
falsification and experimental design using set-based
methods based on work of Kuepfer et al. [9] is developed.
For the classification of complete parameter sets a
feasibility problem is defined, which is relaxed to a
computationally efficient SDP. Based on this SDP, an
algorithm to outer approximate the set of all consistent
parameters of discrete time dynamical processes with
rational right-hand side is developed.

The resulting approximation to the SCP directly describes
the uncertainty in the parameters resulting from uncertain
measurements. The result can also be applied for model
falsification. Owing to these properties, the proposed
approach provides valuable information to the modeler.
Furthermore, the set-based approach is applied to define a
measure for the information content of a specific
experimental measurement. This measure can be used to
select the most informative experimental setup with respect
IET Syst. Biol., 2010, Vol. 4, Iss. 2, pp. 119–130
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to parameter identification, even in case of extremely limited
a priori information and uncertain input sequences.

To illustrate the method, it is applied to a simple model of
the MAPK cascade. This example highlights the advantages
of the set-based approach for parameter identification, model
falsification and experimental design over classical methods.
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