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Symbols

θ̂, â, x̂0, . . . Estimator of θ, a, x0, . . .
ẋ Time derivative of x
< . > Expectation value
∼ . . . is proportional to . . .
≈ . . . is approximately equal to . . .

χ2 Objective function
δ Dirac delta function, population inversion
δij Kronecker delta symbol
λ Lyapunov exponent or laser net gain
θ Vector of unknown variables (parameters)
∆θ Update step
σ Standard deviation
τ Delay, time lag

D Separation of multiple shooting intervals for DDEs
f Right-hand side of a dynamic equation
g Observation function
hj Initial curve of a DDE in jth multiple shooting interval
K Number of data points per multiple shooting interval
M Number of multiple shooting intervals
me Number of equality constraints
mg Number of inequality constraints
N Number of data points
p Vector of dynamic parameters
sj Spline variable in jth multiple shooting interval
S Sensitivity matrix
t Time
∆t Sampling interval
T0 Beginning of fitting interval
Tj Beginning of jth multiple shooting subinterval
T Length of fitting interval
x(t),xi State vector for continuous and discrete systems
xi Component of x
x0 Initial values (not to be confused with starting guesses)
xτ Retarded state variable in DDEs
yi Measurement





Chapter 1

Introduction

The eye of the cat is blind to the mouse
when the mouse is still.

Time series analysts expect to be able to extract more information from
dynamical processes than from steady states. From the observation of dy-
namical systems they hope to obtain insight into the laws ruling their time
evolution and thus to gain knowledge of the systems themselves.

Fig. 1.1 on page 3 shows an overview of important types of determinis-
tic dynamical systems, classified according to the mathematical equations
used to model them. Though a rather broad range of mathematical theory
is touched by them, they have some common properties. There is a state
vector evolving in time according to some dynamic equation. Typically
the dynamics depends on unknown parameters and the trajectory is only
partially observed. The aim is to estimate the parameters from noisy mea-
surements of the time course and to construct the unobserved components
of the system.

Considering the right-hand side of a dynamical system, one can distin-
guish between truly parametric models, in which all parameters are supposed
to have a physical meaning, and black box models in which the right-hand
side belongs to a rather general class of functions, e.g. polynomials or ra-
dial basis functions (Crutchfield and McNamara 1987; Giona et al. 1991;
Weigend et al. 1990; Casdagli 1991). While the latter models do a good
job when only secondary properties of the dynamical system like Lyapunov
exponents or in-sample predictions are sought, parametric models should be
preferred when the aim is to gain insight into the process itself or to predict
the behaviour of the system in regions of the state space that are not covered
by measured data.

Sometimes educated guesses are made for the parameters and the result-
ing model predictions are compared with measured data by visual inspection
(Arecchi et al. 1988; Ciofini et al. 1993; Meucci et al. 1992; Weiss et al. 1995;

1



2 CHAPTER 1. INTRODUCTION

Zehnlé et al. 1992; Gouesbet et al. 1996). In the absence of a systematic
adaptation of the mathematical models to the data, it is not possible to dis-
tinguish between discrepancies that stem from wrongly chosen parameters
in a sufficient model on the one hand and shortcomings of the model itself
on the other. A fair comparison between two different models requires that
the models be optimised with respect to their parameters first.

Many methods estimate the parameters systematically but regard each
data point as independent of all but the immediately preceding one (Crutch-
field and McNamara 1987; Giona et al. 1991; Corrêa et al. 2000; Gouesbet
et al. 1996; Hegger et al. 1998; Cremers and Hübler 1987). They neglect
important information about the data, namely that they all stem from a
single underlying trajectory. As a consequence the estimates are less precise
than they could be.

This thesis considers maximum likelihood methods for the estimation
of the parameters and the unobserved components. These methods take
into account the entire information about the deterministic nature of the
underlying true trajectory, i.e., they determine the model trajectory that
satisfies the dynamical equations and comes closest to the observed data
with respect to an appropriately defined cost function. Maximum likelihood
methods are asymptotically unbiased and most efficient with respect to the
variance of the estimates. The difficulty is to find the global minimum of
the cost function. Since the solution of the dynamic equations is rather
sensitive to the parameters, there will usually exist numerous local minima
apart from the global one. For ordinary differential equations (ODEs), this
problem is overcome by means of the multiple shooting technique developed
by Bock (1981, 1983). An equivalent method will be developed and tested
for delay differential equations (DDEs).

This thesis can by no means treat all of the systems in Fig. 1.1. It
considers time-discrete systems, ODEs and DDEs in some detail. Chapter 2
describes methods to estimate parameters in dynamical systems in general
and in these three classes in particular. The following three chapters are each
devoted to one of the classes. Chapter 3 examines the strengths and limits
of the maximum likelihood approach for time-discrete systems, using the
logistic map as an example. While in this chapter simulated data are used,
Chapter 4 describes an application to measured data from a CO2 laser, using
a five-dimensional ODE. In order to emphasise the fact that experimental
data represent a much greater challenge than theoretical simulations, this
chapter describes comprehensively all steps undertaken to obtain the results.

Delay differential equations are considered in Chapter 5. Sometimes
DDEs are approximated by ODEs with additional compartments. The use-
fulness of this technique is examined with an example from infectious disease
modelling. Finally, the multiple shooting method for DDEs is applied to the
Mackey Glass system and to measured data from an electronic circuit.
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Figure 1.1: Overview of classes of deterministic dynamical systems. ODEs: or-
dinary differential equations; DDEs: delay differential equations; IDEs: integro-
differential equations; DAEs: differential algebraic equations; PDEs: partial dif-
ferential equations. The vertical arrangement reflects the computational effort as-
sociated with them. The arrows between the bubbles are to be read as “are a
special case of”. The dashed lines indicate that DDEs and IDEs can also be seen
as PDE-like systems.
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Chapter 2

Methods

This chapter provides the methods needed for the estimation of parameters
in the applications presented in Chapters 3–5. Though the classes outlined
in Fig. 1.1 are qualitatively different, they share some properties and so
do the methods used to treat them. Section 2.1 describes these common
methods. Hereafter, methods are described that are specific to the different
classes. The last section makes some remarks concerning the classes not
treated here.

2.1 Estimating Parameters in
Deterministic Dynamical Systems

Besides the specific form of the dynamical equations there is always a state
vector x evolving in time, thereby defining a trajectory that depends on a
set of unknown parameters θ:

x = x(t, θ), t ∈ I, (2.1)

where I is some subset of R. In general, x(t, θ) is not known explicitly. For
instance, I may be a time interval and x(t, θ) the solution of an ordinary
differential equation for the given parameters. The aim is to estimate the
unknown parameters from noisy measurements of the state vector.

The very general Eq. (2.1) relates the state vector x at a time t to the un-
known parameters θ. As a second part, the complete description of a model
contains the observation equation, the relation between the state vector and
the measured data. Normally not all components of x can be accessed
experimentally and the observables, i.e. those that can be accessed, are of-
ten subject to nonlinear transformations that contain additional unknown
parameters. For ease of notation the following description is restricted to
scalar observations. The generalisation to multivariate data is straightfor-
ward. The time series {yi} is a measurement of the state vector at discrete

5



6 CHAPTER 2. METHODS

times ti via the observation function g:

yi = g(x(ti,θ),θ) + ηi, i = 1, . . . , N. (2.2)

Here, ηi denotes independent normally distributed random numbers with
zero mean and variance σ2

i , accounting for measurement noise.
It must be emphasised that the observation equation is just as important

as the dynamical equations of the model underlying Eq. (2.1). Both together
define the direct problem. The aim here is to estimate the parameters from
measured data, i.e. to solve the inverse problem.

A well established estimator for θ is the maximum likelihood estimator.
It is defined as the vector that minimises the likelihood of the measured
data, given θ:

θ̂ = arg max
θ

L({yi}|θ).

In the case of white Gaussian observation noise, it is equivalent to minimise
the objective function, which is the sum of squared residuals between the
data and the model trajectory, weighted with the inverse variance of the
noise:

χ2(θ) =
N∑

i=1

(
yi − g(x(ti,θ),θ)

σi

)2

(2.3)

Often additional knowledge about the parameters can be formulated as
equality or inequality constraints. For instance, rate constants in compart-
ment models are non-negative. In the example of the CO2 laser in Section
4.3.3, relations between the initial values of the ODE and the parameters
are used to reduce the number of degrees of freedom. Finally, in the context
of the multiple shooting approach described later on, the continuity of the
final trajectory is ensured by means of equality constraints.

All these constraints and the least squares minimisation together amount
to a nonlinear optimisation problem with nonlinear equality and inequality
constraints: find the vector of parameters θ such that

χ2(θ) =
N∑

i=1

Ra
i (θ)2 = min, (2.4a)

Re
i (θ) = 0, i = 1, . . . ,me, (2.4b)

Rg
i (θ) ≥ 0, i = 1, . . . ,mg. (2.4c)

2.1.1 Solution of the Optimisation Problem

Since at least Ra and Re are nonlinear in general, iterative algorithms must
be used for the solution. Gill et al. (1981) give a good overview of various ap-
proaches. For an efficient optimisation, at least first derivatives with respect
to the parameters (sensitivities) should be provided. For the applications
reported later on, two well-established optimisation algorithms were used.
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The first one is a generalised Gauss-Newton method. It is well suited to
least squares minimisation because it exploits the structure of χ2 as a sum of
squared residuals. In the k-th iteration step, the nonlinear functions Ra

i , Re
i

and R≥
i are approximated by their first order Taylor expansions around the

current parameter estimate θk, resulting in the following linear optimisation
problem with linear equality and inequality constraints:

N∑
i=1

(Ra
i (θk) +

∂Ra
i (θk)
∂θ

·∆θ)2 = min, (2.5a)

Re
i (θk) +

∂Re
i (θk)
∂θ

·∆θ = 0, i = 1, . . . ,me, (2.5b)

Rg
i (θk) +

∂Rg
i (θk)
∂θ

·∆θ ≥ 0, i = 1, . . . ,mg. (2.5c)

It is solved by the code LSEI (Hanson and Haskell 1982).
The solution of the linear system yields an update step ∆θk to the pa-

rameters. The improved estimate is given by θk+1 = θk +λ∆θ, where λ ≤ 1
is an appropriately chosen damping stepsize (Bock 1987). λ is smaller than
1 when the problem is highly non-linear and equal to 1 during the final
iterations. The rank-deficient case, e.g. when parameters or combinations
of parameters cannot be identified reliably, is treated by an appropriately
chosen (and manually adjustable) rank decision criterion. When the lin-
earised problem is rank deficient, the corresponding linear combination of
parameters is considered undeterminable and is not changed. When the al-
gorithm signals rank deficiency at the convergence point, this indicates that
the model is over-parameterised.

The difference between the left hand side of Eq. (2.5a) and the second
order Taylor approximation of χ2(θk + ∆θ) is the term∑

i

∆θt Gi ∆θ Ra
i

with the matrix

Gi =
∂2Ra

i

∂θ∂θt .

For correctly specified models, the residuals Ra
i are small at the conver-

gence point and the method shows a nearly quadratic convergence behaviour.
However, in practical applications, one often accepts some degree of model
mis-specification for the sake of simplicity or because the measurements do
not contain enough information for the estimation of the most comprehen-
sive model.

Furthermore, Gi is large, if Ra is extremely nonlinear, as in the case of
chaotic maps. Then even small residuals can render the convergence linear
or even result in a repelling behaviour at the minimum of χ2. For these
cases a quasi-Newton method with BFGS-update was used, implemented in
the NAG routine E04UNF (Gill et al. 1981; NAG 1997).
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2.1.2 Statistics

At the convergence point, the matrix

C =
(

1
2H

)−1

is computed, where

Hij =
∂2χ2(θ)
∂θi ∂θj

is the Hesse matrix of the objective function. If some prerequisites are
fulfilled, the errors of the parameters are multivariately normally distributed
with covariance matrix C = {cij} (Honerkamp 1994). Independent 95%
confidence intervals for θi are given by θ̂i ± 1.96 · (cii)1/2. The prerequisites
are that the model is specified correctly, the global minimum of χ2(θ) is
found and its quadratic approximation holds in a large enough region around
the solution point.

An eigenvalue analysis of C reveals parameters or linear combinations of
parameters that are not identifiable from the given data. This happens, for
instance, when there is a continuous ambiguity in the model, i.e. , the model
is invariant under a continuous family of transformations that alter the state
vector and the parameters, but not the observations. χ2 itself serves as a
criterion for the ability of the model to describe the given experimental
observations (goodness of fit).

Overfitting A good correspondence between the model trajectory and the
measurements has little significance if it has been achieved by adjusting a
large number of free parameters. Overfitting is when the number of degrees
of freedom is not in a reasonable relation to the amount of information
contained in the data. This can be detected by disproportionately large
confidence intervals.

2.1.3 Multiexperiment Analysis

Often there are several data sets that one hopes to describe by the same
model and at least partially with the same parameters. The method is able
to take into account all data sets simultaneously. Each parameter can either
be varied independently, forced to be the same for all records or fixed to a
given value. This is called a multiexperiment analysis.

2.2 Ordinary Differential Equations

Ordinary Differential Equations (ODEs) are the canonical way of describ-
ing time-continuous dynamical systems. Consider a dynamical process de-
scribed by n nonlinear ordinary differential equations of first order that
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depend on the unknown dynamical parameters p. The initial value problem
is defined by the ODE together with an initial condition:

ẋ = f(t,x,p), x ∈ Rn, t ∈ [T0, T0 + T ], (2.6a)

x(T0) = x0 (2.6b)

In general, the initial values are themselves unknown parameters. They are
contained in the vector of unknown parameters θ:

θ = (p,x0) ∈ Rp+n. (2.7)

The function f is called the right-hand side of the differential equation. If
it is linear in x, the solution can be given analytically in terms of exponential
functions and sine waves. Nonlinear ODEs, on the other hand, can give
rise to completely irregular behaviour and a wide spectrum of interesting
phenomena even in as few as three dimensions, as Lorenz showed with his
famous example (Lorenz 1963).

2.2.1 Initial-Value Approach

If the problem of parameter identification in nonlinear ODEs is treated in
a straightforward way, one is led to the initial-value approach: starting
from some initial guess of the parameter vector, the dynamic equations are
solved over the entire fitting interval and χ2(θ) is evaluated. Then χ2(θ) is
minimised iteratively as described in Section 2.1.1.

Compared with regression, where an explicit function is used as a model,
this task is more difficult because the ODE trajectory x(t, θ) is rather sensi-
tive to the parameters, especially in the case of complex dynamical systems.
Badly chosen initial estimates can preclude most methods from yielding any
solution at all because the trial trajectory might diverge. Since χ2(θ) shows
a highly non-linear dependence on θ, it will usually have numerous local
minima apart from the global one that corresponds to the true parame-
ters. For these reasons the initial-value approach is often not successful for
parameter estimation in nonlinear ODEs.

To demonstrate these problems, a time series of the Lorenz system (Hor-
belt et al. 1998b) of length T=4 was simulated with the standard parameters
σ = 10, r = 46, b = 2.667 and the initial values x0 = 5.7654, y0 = 10.50547
and z0 = 30.58941. The sampling interval was 0.04 and Gaussian noise with
a noise level of 20% was added. Then the parameters were estimated with
the initial-value approach. As starting guesses the parameters have been set
to twice the true values. The outcome can be seen in Fig. 2.1 on the next
page. The optimisation procedure is trapped in a local minimum.

2.2.2 Multiple Shooting Approach

The technique of multiple shooting has been used for solving boundary value
problems in ODE systems (Stoer and Bulirsch 1993). In the context of
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Figure 2.1: Failure of the initial-value approach for the Lorenz system. Right
from the start the model trajectory is far away from the data points, rendering
them useless for the optimisation process.

parameter estimation, the method was introduced in van Domselaar and
Hemker (1975) and, in a much more general context, by Bock (1981, 1983).
The motivation to use multiple shooting for parameter estimation is that
the initial-value approach effectively neglects information on the dynamics
of the system present in the measurements. Even though the time course
of at least one component, the observation, is known rather accurately, the
initial-value approach does not take advantage of any but the very first
observation in the fitting interval. If the parameters are far off from the
correct ones, the trial trajectory soon loses contact with the measurements.

For the multiple shooting approach, the fitting interval [T0, T0 + T ] is
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Figure 2.2: Convergence of the multiple shooting algorithm for the Lorenz system.
The model trajectory is always near the data points, even when the parameters are
rather wrong.

partitioned into M subintervals:

T0 < T1 < . . . < TM = T0 + T.

For each subinterval, local initial values x0
j are introduced as additional

parameters. The total parameter vector is then θ = (p,x0
0, . . . , x

0
M−1). Let

xj(t, θ) denote the solution of Eq. (2.6a) within [Tj , Tj+1) with initial values
x0

j . While the dynamic parameters p are unique over the entire interval,
the local initial values are optimised separately in each subinterval. The
measurements are used to get starting guesses for them. This approach
leads to an initially discontinuous trajectory, which is, however, close to the
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measurements. The final trajectory must of course be continuous, i.e. the
computed solution at the end of one subinterval must finally equal the local
initial values of the next one:

xj−1(Tj ,θ) = xj(Tj ,θ) = x0
j , j = 1, . . . , M − 1. (2.8)

Eq. (2.8) represents a set of equality constraints like those in Eq. (2.4b).
The special structure of their linearised form Eq. (2.5b) permits them and
the extra variables x0

j , j = 1, . . . , M − 1, to be eliminated easily from the
resulting large linear system. In this way the dimension of the system of
equations to be solved in each iteration is no larger than with the initial-value
approach. This procedure is called condensation (Bock 1983). It can not be
used when the quasi-Newton optimisation method is used for optimisation.

Since only the linearised continuity constraints are imposed on the up-
date step, the iteration is allowed to proceed to the final continuous solution
through “forbidden ground”: the iterates will generally be discontinuous
trajectories. This freedom allows the method to stay close to the observed
data, prevents divergence of the numerical solution and reduces the problem
of local minima.

The best way to understand the procedure is to regard an example.
The simulation from Fig. 2.1 was repeated, but now with the multiple
shooting method ( Fig. 2.2). It converges to the correct solution after 26
iterations. More details of the mathematical and implementational aspects
of the method are given in Bock (1983, 1987). Other applications can be
found in Horbelt et al. (2001b, 1998b); Timmer et al. (2000b); Baake et al.
(1992); Baake and Schlöder (1992).

2.2.3 Calculating Sensitivities

The linearisation Eq. (2.5) requires not only the trajectory itself to be com-
puted, but also its first derivatives with respect to the parameters. For
ODEs, x(ti,θ) is not given explicitly, in contrast to non-linear parameter
estimation in regression. The sensitivity matrix S(ti,θ) := ∂x(ti,θ)

∂θ can be
calculated in different ways:

• External Numerical Differentiation (END)

This method is most simple because no analytical derivatives must be
provided. For each parameter θj , the model equations are solved one
more time with a slightly disturbed parameter value θj + h. Then a
finite difference yields the sensitivity:

∂x(ti,θ)
∂θj

≈ x(ti,θ + hej)− x(ti,θ)
h

, (2.9)

where ej is the j-th unit vector. If the integration method uses adap-
tive stepsizes, the numerical solution of the ODE is discontinuous with
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respect to the parameters. Then a small value of h can seriously desta-
bilize the minimisation algorithm. This can be defused by using the
same integration steps for the evaluation of x(ti,θ+hej) as for x(ti,θ).
A further refinement is to use symmetric finite differences:

∂x(ti,θ)
∂θj

≈ x(ti,θ + hej)− x(ti,θ − hej)
2h

. (2.10)

This increases the accuracy from the order of h to the order of h2 at the
cost of only doubling the computation time. Nevertheless, the finite
truncation error that always exists with derivative-free methods be-
comes dominant at the convergence point, where the sensitivity of χ2

with respect to θ tends to zero by definition. Therefore the quadratic
or at least super-linear convergence behaviour of sophisticated optimi-
sation algorithms is destroyed by external numerical differentiation.

• Internal Numerical Differentiation (IND)

Given a common integration method and fixed or adaptively chosen
stepsizes, the solution of an ODE, evaluated at a time ti is the re-
sult of a finite number of arithmetic operations, called the integration
scheme. The scheme can be differentiated analytically with respect
to the parameters to yield the sensitivities (Bock 1983; Hairer et al.
1987). IND is very efficient, but it must be developed specifically for
each integration method.

• Integration of the sensitivity equations

The time evolution of S is given by

Ṡ =
d
dt

∂x

∂θ
=

∂

∂θ
ẋ =

d
dθ

f(t, x(t, θ),p)

=
∂f

∂x

∂x

∂θ
+

(
∂f

∂p
;0

)
= JS + (Jp;0) , (2.11)

where

J =
∂f(t, x,p)

∂x

Jp =
∂f(t, x,p)

∂p

are the Jacobian matrix and the inhomogeneity matrix of the ODE
respectively. 0 is the m × m null matrix expressing that ∂f(t,x,p)

∂x0
j

is
zero.

These ODEs are called sensitivity equations or variational equations.
The fact that they belong to the same class of dynamical systems as the
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original equations, is a principle that holds for all classes enumerated
in Fig. 1.1. The right-hand side of the sensitivity equations depends
on the solution of the original equation (2.6a). Therefore Eqs. (2.6a)
and (2.11) are combined to an m(1 + p + m)-dimensional ODE that is
solved with standard variable step size integration methods. In order
to increase the efficiency of the integration, the error control can be
modified to regard only the original equation. This is usually sufficient
because errors in the sensitivities affect only the rate of convergence
and not the accuracy of the result. With this modification the method
achieves the same efficiency as IND, while it can be used with virtually
every integration method.

The latter method was used in the examples reported here.

2.3 Time-discrete Systems

Since measurements of a dynamical process are usually sampled with equidis-
tant times, it is an obvious step to look at the process also only on a time-
discrete level. An advantage of maps is their simplicity in comparison with
ODEs. They can be used to test methods for estimating parameters and to
investigate fundamental mechanisms.

Time-discrete dynamical systems are mostly autonomous, i.e. do not
explicitly depend on time. They are defined by a map function

xi = f(xi−1). (2.12)

The right-hand side f could be defined by the propagation of an ODE from a
time t to t+∆t with initial values xi−1, for instance. Another way to convert
an ODE into a map is through the technique of Poincaré section. For this
method the ti are defined as the times at which the state vector crosses a
given (n − 1)-dimensional manifold in the state space (e.g. a hyper-plane)
in a given direction. This technique is very popular in the study of chaotic
systems since it allows the reduction of the state space by one dimension
while characteristic properties of the system (e.g. the non-trivial Lyapunov
exponents) are retained.

Having developed the full apparatus for estimating parameters in ODEs,
it is only a short path to transfer this approach to maps. Since maps often
exhibit very complex dynamics, the problem of local minima is expected
to be relevant in this context. The multiple shooting technique will turn
out to be essential for maps. The groups of K points {tmK , . . . , tmK+K−1}
is combined to the mth “multiple shooting interval”. The extended vector
of parameters is θ = (p,x0,xK , . . . , x(M−1)K), where M is the number of
multiple shooting intervals. The subsequent states within the mth interval
fulfil the dynamical equation

xi = f(ti,xi−1,p), i = mK + 1, . . . , mK + K − 1. (2.13)
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The continuity between the intervals, which is the same equation for the
remaining points i = mK, m = 1, . . . , M − 1, is realized via equality
constraints. These may be violated during the iterative process, but they
are satisfied at the convergence point. For the solution of the optimisation
problem, a quasi-Newton method is used, since the stability of the Gauss-
Newton method is too delicate for the extreme nonlinearities existing in
many maps. The initial-value approach corresponds to setting M = 1 and
K equal to the number of data points.

The sensitivities Si(θ) := ∂xi
∂θ are computed from the map

Si = JS + (Jp; 0) , (2.14)

where

J =
∂f(ti,xi−1,p)

∂x

Jp =
∂f(ti,xi−1,p)

∂p

analogously to Eq. (2.11) for ODEs.

2.4 Delay Differential Equations

Delay Differential Equations (DDEs) arise from ODEs when the right-hand
side depends on the state at one or more retarded times. Examples of
such systems are used to model processes in physics, biology, medicine and
engineering science, among others.

The uniqueness of the solution of a DDE requires the specification of the
initial curve within an interval as long as the largest delay time involved. In
this way an initial curve problem is posed, analogously to the initial value
problem of an ODE. As the initial curve is a vector in a function space,
the state space of a DDE is infinite-dimensional. When it is unknown, the
question of identifiability arises. Only a finite number of degrees of freedom
can be estimated from measured data.

For ease of notation this presentation is restricted to the most frequent
case of a single time lag τ and a single, namely the first component of the
state vector entering into the dynamics at the delayed time. Then the initial
curve problem reads

ẋ = f(t, x, xτ ,p) for t > T0 + τ (2.15a)
xτ = x1(t− τ)

x1(t) = h0(t) for t ∈ [T0;T0 + τ ]. (2.15b)
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2.4.1 Direct Problem

The solution of Eq. (2.15) can be carried out in steps of τ (method of steps)1:
Let Ik denote the interval [T0 +kτ ;T0 +(k+1)τ ]. In Ik, x1(t−τ) is given by
the solution on the preceding interval Ik−1. Thus the DDE Eq. (2.15a) can
be solved as an ODE with a known explicit time dependence. In general,
the first derivative of the solution has a discontinuity at T0 + τ which is
recurring in the second derivative at T0 + 2τ and so on. This should be
taken into account in the numerical integration.

ODE integrators with variable step size selection, which are favourable,
require the specification of the right-hand side at arbitrary points in time. In
the DDE case this means that a continuous solution must be computed for
a point in time that is not known beforehand. This is not possible with the
usual routines that integrate from point to point and return the trajectory
only at the points requested.

The idea of a Runge-Kutta algorithm is to approximate the solution by
piecewise polynomials. If the coefficients of these are stored in addition to
the function values at each integration step, the solution can be interpolated
afterwards. This technique, called dense output, was already used by the
ODE integrator DOPRI5, in order to circumvent the maximum length of the
integration steps being limited by the sampling interval. The code RETARD is
an extension of DOPRI5. It supplies a routine computing the lagged variables,
that can be called within the calculation of the right-hand side of the DDE.
Both codes are made public in Hairer et al. (1987).

2.4.2 Calculating Sensitivities

Analogously to Eq. (2.11) for ODEs, the sensitivities S = ∂x
∂θ of the state

vector with respect to the parameters fulfil the DDE

Ṡ = JS + J ′Sτ + (Jp;0) , (2.16)

where

J =
∂f

∂x
, J ′ =

∂f

∂xτ
,

Jp =
∂f

∂p
, Sτ =

∂x1

∂θ
(t− τ),

An exception is the delay parameter τ , being part of p when the time lag
is unknown. The right-hand side f(t, x(t, p), x1(t − τ,p),p) depends on
τ through the retarded time t − τ , in addition to the three dependencies
through p already contributing to Eq. (2.16). Therefore the time evolution

1 If multiple time lags exist, τ is the smallest of them.



2.4. DELAY DIFFERENTIAL EQUATIONS 17

of ∂x
∂τ contains an extra term:

d
dt

∂x

∂τ
=

∂f

∂x

∂x

∂τ


t

+
∂f

∂xτ

(
∂x1

∂τ


t−τ

− ∂x1

∂t


t−τ

)
+

∂f

∂τ
. (2.17)

The extra term is given by

∂x1

∂t
(t− τ) =

{
ḣ0(t− τ) t ≤ T0 + 2τ

f1(t− τ,x(t− τ), x1(t− 2τ),p) t > T0 + 2τ.
(2.18)

2.4.3 Multiple Shooting

Many DDEs exhibit irregular oscillations due to the infinite-dimensional
phase space. Therefore a technique similar to the multiple shooting ap-
proach is expected to be particularly helpful for the estimation of parame-
ters in DDEs. However, there is no straightforward approach to express the
continuity constraints which are an essential element of this technique.

As in the case of ODEs, the fitting interval can be partitioned into subin-
tervals.

Each subinterval j has its own initial curve hj of length τ , involving
infinitely many degrees of freedom. The purpose of the continuity con-
straints is to ensure that the final trajectory is a solution of the DDE, i.e.
the initial curves of subsequent subintervals must each be consistent with
the trajectory on the preceding intervals. Therefore the subintervals must
have an overlap of length τ with each other. Let gj define the segment
of the (j − 1)th subinterval that overlaps with the jth. Continuity would
require gj and hj to be exactly equal. This can not be achieved since hj

must somehow be represented by a finite number of parameters ps and gj

will in general not be a member of the corresponding family of functions. In
other words, while gj is an arbitrary vector in a function space, hj lies on a
ps-dimensional sub-manifold of that function space. Two methodically dif-
ferent ways to formulate the matching conditions between the two functions
are conceivable:

1. ‖gj − hj‖ is minimised, where ‖.‖ is an appropriately defined norm in
the function space.

2. gj is projected onto the manifold of initial curves and the correspond-
ing ps parameters are forced to be equal to those of hj .

The first approach requires two cost functions to be minimised simulta-
neously, i.e. the mismatch norm must be included as a penalty term in the
cost function Eq. (2.4a), scaled with a penalty parameter whose appropriate
size is rather difficult to determine. Therefore the second approach is pur-
sued in the following procedure. The parameterisation of the initial curves
will be performed via cubic splines.
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d
Spline segment Data segment

Second interval

KdD

0 1 2 3 K

First multiple shooting interval

T0 T1 T2

Figure 2.3: Schematic diagram of the multiple shooting intervals and their spline
and data segments. Bold lines: spline segments. Thin lines: data segments.
Open circles: spline knots.

Estimation procedure

1. Define a grid of points {T0 + kd, k = 0, 1, . . .} with d being chosen
appropriately. These points will serve as the knots of cubic splines
representing the initial curves. They should be dense enough to allow
for a sufficient approximation of the model trajectory. If the measure-
ments are sampled equidistantly, the data points or a subset of them
should be used for the knots.

2. Estimate the smallest K such that Kd is equal to or greater than the
time lag: (K − 1)d < τ ≤ Kd. The splines will be defined on intervals
of length Kd. No problem will arise when τ is smaller than Kd (then
only that part of the spline will be used as the initial curve) or only
a little larger (then the spline will be extrapolated). When τ is much
larger than Kd, the spline will give a poor approximation of the initial
curve. Therefore, if τ is unknown, it is better to start with a large K.

3. Choose the separation D of the multiple shooting mesh points in multi-
ples of d and define Tj=T0+jD, j=1, . . . , M . Each subinterval consists
of a spline segment of length Kd and a data segment of length D as
depicted in Fig. 2.3. The best choice of D depends on the regularity
of the time series and on the quality of the starting guesses for the
parameters, as in the case of ODEs. A typical choice is D = Kd, in
which case the end of each spline segment coincides with the beginning
of the following one. D < Kd generates multiply overlapping intervals
and will rarely be meaningful.

4. Introduce spline variables sj = (ṡj0, sj0, . . . , sjK , ṡjK) for each spline
segment [Tj ;Tj + Kd]. The cubic spline hj is defined as a piecewise
cubic polynomials function, being continuous up to second order and
satisfying

hj(Tj + kd) = sjk, k = 0, . . . , K (2.19)

ḣj(Tj + kd) = ṡjk, k = 0,K. (2.20)



2.4. DELAY DIFFERENTIAL EQUATIONS 19

For a detailed discussion of splines, see Press et al. (1992). They are
computed in two steps. In the setup step, s̈jk = ḧj(Tj + kd), k =
0, . . . , K are calculated from sj . The s̈jk are linear in the sj :

s̈jk = Lsj .

In the evaluation step, hj(t) is evaluated at arbitrary times t, using
sj0, . . . , sjK and s̈j0, . . . , s̈jL. Since the sj will be fit variables, sensi-
tivities of the spline functions with respect to their respective spline
variables are also needed. For their calculation the explicit knowledge
of L is necessary.

5. The initial curve is the spline function hj , restricted to the interval
[Tj + Kd − τ ;Tj + Kd], where τ is the actual estimate of the delay
parameter. Note that the end of the initial curve matches the end
of the spline segment, even when τ varies. Eqs. (2.15a) and (2.16)
are integrated on the data segment. The residuals between the model
trajectory and the data points contribute to the cost function. The
first data segment is extended by its respective spline segment in order
to include the corresponding data points in the cost function.

For each but the last trajectory, gj+1 is defined by the part overlapping
with the spline segment of the following interval. It is projected onto
the spline manifold {sj+1} ⊂ RK+3 by simply reading out the function
values and derivatives

rj+1,k = gj+1(Tj+1 + kd), k = 0, . . . , K (2.21a)
ṙj+1,k = ġj+1(Tj+1 + kd), k = 0,K. (2.21b)

Now the continuity constraints read

rj = (ṙj0, rj0, . . . , rjK , ṙjK) = sj , j = 1, . . . , M. (2.22)

As in the case of ODEs, the number of continuity constraints is equal
to the number of variables newly introduced in each subinterval. For
the lagged variable, the ordinary continuity constraints Eq. (2.8) are
disregarded since Eq. (2.19) implies x1(Tj + Kd)=sjK . For the other
variables, if there are any, Eq. (2.8) is used in addition to Eq. (2.22).

6. During the first iterations of the optimisation, the spline variables are
held fix because they are expected to be estimated well from the data.
This is important when the starting guesses for the other fit variables
are far from the true values. After the algorithm has converged for
the first time, they are released and fitted together with the other
variables. (two-phase procedure)
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Choice of Control Parameters

While Kd is required to approximate the time lag, K itself and D are
important control parameters for the fit. Their optimal choice must be
made with regard to the problem at hand. When long time series with
many irregular oscillations are examined, many subintervals are needed in
order to achieve global convergence, especially if good starting guesses of
the parameters are not available. After convergence the algorithm can be
restarted with improved starting guesses and without multiple shooting in
order to be perfectly sure that the projection Eq. (2.21) does not distort the
analysis.

K controls the accuracy of the splines. If it is large, the question of
over-fitting must be considered. For the second and subsequent subintervals,
this is not an issue since the additional degrees of freedom introduced by
the spline variables are counterbalanced by an equal number of continuity
constraints.

For the initial curve it is an issue. However, the influence of the initial
curve on the dynamics is that of an external input. High frequency portions
are damped by the integration. Thus, the DDE behaves like an intrinsic
low-pass filter. Therefore chaotic delay systems have often low-dimensional
attractors that are attained after a short transient period. All but a few
degrees of freedom of the initial curve decay rapidly. As a consequence the
largest part of the trajectory is not sensitive to these degrees of freedom. In
the corresponding directions in the space of fit variables, χ2(θ) is a slowly
varying function. These directions are linear combinations of the variables
of the first spline segment, so these spline variables are delicate to noise and
their estimates will have large confidence intervals. This could be termed
over-fitting if the construction of the beginning of the model trajectory was
a major aim. Yet the main interest will generally be an accurate estimate of
the model parameters and this aim is achieved by means of the remaining
part of the trajectory.

2.5 Other classes

A few remarks shall be made concerning those classes that can not be treated
in detail here.

Differential-algebraic equations (DAEs) are ODEs in which one or
more differential equations are replaced by algebraic relations between state
variables. Such systems occur, for instance, in the modelling of chemical
reaction systems and in Hamiltonian systems, in which constants of motion
are conserved.

DAEs with simple algebraic portions can be translated into pure ODEs
by eliminating individual variables with the help of the algebraic equations.
More complex DAEs can be treated in a similar way but the resulting ODEs
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may become excessively complicated. In this case it would be preferable to
use integration methods that are explicitly developed for DAEs (Brenan
et al. 1989).

Integro-differential equations (IDEs) are a generalisation of DDEs
in which the delay time is not a fixed value. It rather follows some statistical
distribution. For biological systems this scenario is often more realistic than
the assumption of fixed delays. Mathematically it is formulated by means
of an integral term in the evolution equations:

ẋ = f(t, x,xτ ,θ), (2.23)

with

xτ (t) =
∫ t

−∞
g(t, t′,x(t′))dt′. (2.24)

If the time delay has a lower bound τ > 0, i.e. , g(t, t′,x) = 0 for t−t′ < τ ,
the methods of Section 2.4 can be applied, where for each evaluation of f , an
integral and its sensitivities have to be computed numerically. Since IDEs
are promising candidates for models in many practical applications, future
work will be devoted to this technique.

Finally, methods for estimating parameters in partial differential equa-
tions (PDEs) can be found in Schittkowski (1999); Bär et al. (1999); Kelpin
et al. (2000); Coca and Billings (2000).
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Chapter 3

Time-discrete Systems

In this chapter, the maximum likelihood methods described in chapter 2
will be tested on the most prominent deterministic time-discrete system, the
logistic map. Some interesting properties and subtleties of the parameter
estimation task can be studied more easily on such a simple system. For
instance, the positive Lyapunov exponent of the map will play an interesting
role in the following. A three-dimensional ODE would be required to study
equivalent properties for a continuous systems.

3.1 Introduction

The map function is written in the form

xi = fa(xi−1) = 1− ax2
i−1, i = 1, . . . , N (3.1)

with the parameter a ∈ (0; 2] and the state xi ∈ [1− a; 1]. The observation
equation reads

yi = xi + ηi, i = 0, . . . , N, (3.2)

where ηi denotes Gaussian white noise with variance σ2. Readers preferring
the equivalent formulation zi = rzi−1(1− zi−1), are referred to Appendix A
for a description of the transformation. In analogy to ODEs, a sequence of
states (x0, x1, . . .) satisfying Eq. (3.1) shall be termed a trajectory.

A simple method for estimating a is to regard the measured values yi as
functions of their precedents yi−1 and to minimise the one-step prediction
error

χ2(a) =
N∑

i=1

(yi − f(yi−1))2

σ2
. (3.3)

This cost function ignores three important facts:

• The probability of a system state to take a certain value x is not the
same for all x in the range of the map. The xi are rather distributed ac-

23
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cording to the invariant measure of the map. This probability density
depends on the parameter.

• The yi−1 in the numerator are treated as if they were noiseless “in-
dependent variables”. Actually they are as noisy as the “dependent
variables” yi. This is called the errors-in-variables problem (Carroll
et al. 1995; Kantz and Jaeger 1997). It can be accounted for by min-
imising the orthogonal distances between pairs of data points (yi−1, yi)
and the graph of the map function. This is called the total least squares
method.

• Two pairs (yi−1, yi) and (yj−1, yj) are not independent of each other,
they are related through the dynamical equation (3.1).

The first two points lead to biased estimates â, even in the limit of
infinitely many data points. When a=atrue=2, the expectation value of â
evaluates analytically to

<â> =
4σ2 + 3

24σ4 + 24σ2 + 3
atrue,

which is only 1.1 for a signal-to-noise ratio of 2.
McSharry and Smith (1999) showed that the total least squares method

is not sufficient to remove the bias. They developed a method that yields
unbiased estimates of a by taking into account the first two points listed
above. The attribute “maximum likelihood” they attached to their method
is misleading since a real maximum likelihood method must not ignore that
one true trajectory is underlying the measurements. The third point means
that information about the data is ignored. As a consequence the variance
of â can not attain its lowest possible value, the Cramér-Rao bound (Cox
and Hinkley 1994).

Jaeger and Kantz (1996) proposed orthogonal distances to correct for
the errors-in-variables and the n-step prediction error to take into account
the dynamic nature of the data, at least over a few iterations of the map
function. The n-step prediction error is based on short trajectories that are
locally fitted to the measurements. Due to numerical difficulties, they could
not extend their methods beyond n=4 iterations though they recognised
that this would be desirable.

The maximum likelihood method used here corresponds to choosing
n=N in the context of the n-step-prediction error: it finds the trajectory
satisfying the dynamical equations over the entire interval and coming clos-
est to the data. This is sometimes termed solving the shadowing problem.
Having solved this problem, the only independent variable left is the very
first one, the initial value x0. In principle the first point in the list above ap-
plies to this initial value. However, this is expected to have only a boundary
effect that has a negligible impact on the parameter estimate.
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Since much more information is taken into account in this way, the es-
timate is expected to have a much lower variance. The difficulty is that the
parameter space is cluttered with local minima corresponding to suboptimal
trajectories. The multiple shooting approach is a technique to find the best
fit trajectory without getting trapped too easily in local minima. In the
following sections the method is applied to simulated data of the logistic
map.

3.2 Logistic Map without Noise

At first noiseless data are used in order to separate difficulties that are due to
noise from those stemming from bad starting guesses. They were simulated
according to Eq. (3.1) with a=1.85, x0=0.8 and N=10. The parameter
a was estimated with the initial-value approach and the multiple shooting
approach ( Fig. 3.1). For the latter, the number K of data points per
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Figure 3.1: Estimating the parameter a in the logistic map from noiseless data
with the starting guess varying from 1.5 to 2 in steps of 0.01. True parameter
a=1.85, initial value x0=0.8, number of data points N + 1=11. Circles: results
for the initial-value approach. The true parameter is found only when the starting
guess is already near the true value. All false solutions are located on a single
line with a=1.778, indicating a clear local minimum. Some circles are missing: for
these starting guesses the algorithm did not converge at all. Crosses: results for the
multiple shooting approach with K=3 data points per multiple shooting interval.
The minimisation is less susceptible, yet not immune against local minima. Points:
results for the multiple shooting approach with K=1. The parameter is estimated
correctly within the entire interval.
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multiple shooting interval (see page 14) was set to 1 and to 3 respectively.
The starting guess a0 for the unknown parameter a was varied from 1.5

to 2 in steps of 0.01. The starting guesses for the initial values were taken
from the data, i.e. they were the true values. While the multiple shooting
method with K=1 converged to the correct value for all starting guesses,
the initial-value approach stopped in a local minimum when a0 was below
1.6 or above 1.9. With K=3 the result was better than with the initial-value
approach but it was worse than with K=1.

The simulation was repeated with N=20. Again the multiple shooting
algorithm supplied accurate estimates. This time the initial-value approach
failed when the deviation of the starting guess was larger than 2 · 10−4. It
is a general rule that the unreliability of the initial value approach increases
with the length of the trajectory.

This comparison clearly demonstrates the necessity of the multiple shoot-
ing approach for estimating parameters in chaotic maps. All following simu-
lations in this chapter were done with one data point per multiple shooting
interval. Nevertheless the multiple shooting method is not necessarily a
guarantee against effects of the starting guess. In fact local minima were
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Figure 3.2: Objective function for noiseless data of different lengths N . Initial
value x0=0.8, true parameter a=1.85. Curves for higher N are higher than those for
smaller N since the summands of Eq. (2.3) are non-negative. The global minimum
at a=1.85 becomes successively sharper but the number of local minima increases.



3.2. LOGISTIC MAP WITHOUT NOISE 27

0

2

4

6

8

10

12

14

16

18

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

O
bj

ec
tiv

e 
fu

nc
tio

n 

�

χ2 (1
.8

5,
x 0

)

Initial value x0

N=13
N=10
N=7

Figure 3.3: Same as Fig. 3.2 for fixed a=1.85 and varying x0.

encountered when the starting guess was below 1.15.
Fig. 3.1 shows that the reason for the lack of reliability must be sought

in local minima of the χ2 landscape. When a false solution was found, it
was always (a, x0) = (1.778, 0.820). To get an impression of the mechanism,
the objective function Eq. (2.3) is regarded. χ2(a, x0) was computed for
noiseless data of different lengths N as a function of a for a fixed initial
value x0=0.8 ( Fig. 3.2), and also as a function of x0 for fixed a=1.85 ( Fig.
3.3).

With each additional data point included in the cost function, the global
minimum at (a, x0) = (1.85, 0.8) becomes sharper, so the unknown variables
can be estimated more accurately. But at the same time, the number of local
minima in which the iterative process could stop unintentionally, increases.
This phenomenon is most distinct when χ2 is plotted against x0.

From Figs. (3.2) and (3.3) it follows that additional noise has a severe
impact on the parameter estimates. Firstly, the starting guesses for the
states, which are taken from the data, are contaminated and can lead into a
false minimum. Secondly, the shape of the objective function is deformed so
that a false local minimum can become the global minimum. For instance,
in Fig. 3.2, there is a local minimum at a=1.716 for N=10. It is so low that
moderate noise on the first few data points could lift the global minimum
above it, having the maximum likelihood estimate jump to 1.716. Before
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studying the results for the logistic map with noisy observations, a digression
to the shift map is made, in order to understand the causalities better.

3.3 Shift Map

The shift map is related to the tent map which is turn similar to the logistic
map for a=2 (see Appendix A). The definition of the shift map reads:

xi = f(xi−1) =

{
2xi−1 0 ≤ xi−1 < 0.5
2xi−1 − 1 0.5 ≤ xi−1 < 1.

(3.4)

This simplest example of a map having chaotic properties shows the es-
sential ingredients of a chaotic system: stretching (slope=2 at each point)
and folding: f(x + 0.5) = f(x). With regard to the parameter estimation
problem, the initial value x0 is the only unknown parameter to be estimated
from noisy measurements.

The nth iterate of the shift map can be written

fn(x0) = xn = 2nx0 mod 1,

where x mod 1 denotes the fractional part of x. That means that fn is a
heavily oscillating function for large n and this also shows up in the objective
function. The name shift map originates from its binary representation.
When the system state is written in the form

xi =
∞∑

j=1

aij2−j , aij ∈ {0, 1},

the map function for the aij reads:

ai,j = ai−1,j+1,

i.e. , the sequence of bits is shifted one bit to the left by the map. This
instructive representation leads immediately to the following conclusions:

1. An infinitesimal separation ε between two initial states x0 and x′0 am-
plifies to 2nε after n iterations, thus the Lyapunov exponent of the
shift map is

λ = log(2)

.

2. When the map is iterated using the usual double precision arithmetic
with a 52 bit mantissa, every state beyond the 52nd iteration is zero
or pure artifact. This limit shall be called the numerical horizon.
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3. If the noise on each data point is small (σ � 0.5), subsequent measure-
ments can be used to improve the accuracy of the result by a factor
of 2 each, thus the standard deviation of the estimated initial value
decreases exponentially with the number of observed states:

σx0 = 2−Nσ = e−λNσ. (3.5)

On the contrary, estimation methods that neglect the existence of an
underlying trajectory, yield estimates whose standard deviation scales
as 1/

√
N according to the law of large numbers.

The exponential scaling is based on the exponential divergence of tra-
jectories which is characterised by the positive Lyapunov exponent. It
is therefore expected to be inherent to all chaotic systems. In partic-
ular, for the logistic map, Figs. (3.2) and (3.3) show that the minima
of χ2 become exponentially sharper with increasing N .

4. If, on the other hand, σ is comparable with 0.5, the most significant
bit of x0, a01, can not be estimated reliably because y0 is noisy and
y1, y2, . . . do not depend on this bit. That means that the accuracy of
the result is limited by a lower bound that is independent of N . To
quantify this bound, assume that x0 < 0.5, i.e. a01 = 0 without loss of
generality and that all data points but the very first are measured with
negligible noise: σ0 = σ, σ1 = σ2 = . . . = 0. The subsequent points
y1, y2, . . . determine x̂0 to be either x0 or x0+0.5. When y0 < x0+0.25,
the correct value is estimated, otherwise x0+0.5 is estimated and the
error ∆ = x̂0−x0 is 0.5. Thus the mean squared error of the estimate
is

<∆2> =
∫ ∞

−∞

1√
2πσ

exp(− 1
2

η2

σ2 )∆2dη (3.6)

=
1
4

∫ ∞

0.25/σ

1√
2π

exp(− 1
2z

2)dz. (3.7)

The exponential law Eq. (3.5) breaks down when σ2
x0

arrives at this
bound.

3.4 Logistic Map with Noise

The analytic results for the shift map raise the hope that the high sensitivity
to initial values, while causing subtleties in the task of convergence to the
global minimum, can also be helpful with regard to the accuracy of the
estimate. The Lyapunov exponent of the logistic map for a=1.85 is λ=0.503.
The corresponding numerical horizon is at the 71st iterate. Since it is not
clear whether results for such long time series can be taken seriously, the
following simulations were made with a maximum length N=60.
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Figure 3.4: Parameter a estimated from noisy time series of length N=20 as a
function of the noise level. For each noise level 100 realizations were made. Plus
signs and error bars: ensemble averages and standard deviations of the mean,
calculated from 100 realizations. The standard deviation of the estimate is ten-
times higher than the standard error of the mean. Broken line: true parameter.
For high noise levels, the estimate has large bias and variance. This is a finite
sampling effect, i.e. the bias vanishes with increasing N .
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Solid line: Linear function of σ for comparison of the slopes. σa is proportional
to σ for moderate noise levels.
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Data were simulated with a=1.85, x0=0.8 and N=20 and observation
noise with noise levels between 0.1% and 100% was added. The noise level
is defined as the ratio between the standard deviations of the noise and the
true signal. For each noise level, 100 realizations of the time series were
generated and the parameters were estimated from them. To suppress any
effects of the starting guess, the true values for all fit variables were supplied
as starting guesses.

Fig. 3.4 shows mean and standard deviation of the estimated parameter
â. The true parameter always lies within the confidence intervals calculated
from 100 realizations. However, the standard error of the mean is ten-
times smaller than the confidence intervals. It indicates a significant bias
for high noise levels that is due to the finite sampling and decreases with
increasing N . In Fig. 3.5 the standard deviation σa of â is plotted double-
logarithmically against the noise level. As expected, σa is proportional to σ
for moderate noise levels.

Next the validity of Eq. (3.5) is examined for the case of the logistic
map, which has a Lyapunov exponent λ=0.503 for a=1.85. For this purpose
the same simulations as above were done, but now with fixed noise levels of
0.1%, 1% and 10% and N varying from 3 to 60. For each combination, 1000
trajectories were simulated. In order to avoid artifacts in the N -dependence,
the initial value x0 was drawn randomly according to the invariant measure
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Figure 3.6: Standard deviation of the estimate as a function of the length N in
double logarithmic plot. Symbols: standard deviation of â, calculated from 1000
realizations each, for the indicated noise level. Solid lines: reciprocal of N with
appropriate factors. The exponential law Eq. (3.5) with λ=0.503 is not fulfilled.
Instead the standard deviation is inversely proportional to N .
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Figure 3.7: Same as Fig. 3.6, but with one parameter being fixed to the true
value. Noise level: 10%. Plus signs: Standard deviation of estimated a when
x0 was fixed. Crosses: Standard deviation of estimated x0 when a was fixed.
Solid line: Expected exponential function e−λN , where λ=0.503 is the Lyapunov
exponent of the logistic map for a=1.85.

of the map. Then the parameters were estimated from each trajectory and
the standard deviation was calculated ( Fig. 3.6). Again the algorithm was
supplied with optimal starting guesses. Nevertheless, no indication of an
exponential scaling law can be found. Instead the standard deviation seems
to scale perfectly as 1/N .

Anomalous scaling behaviour has been reported for dimension estimates
(Theiler 1990) and for Lyapunov exponent estimates (Theiler and Smith
1995), as exceptions from the ordinary 1/

√
N law. In the present case it is

not a surprise that the precision scales better than 1/
√

N since the method
takes into account more information than methods that treat subsequent
pairs of data as independent.

The reason for the non-exponential scaling in contrary to the shift map
is, that two variables were estimated simultaneously while the shift map has
only one parameter at all. In order to verify this, the same simulations were
made with a or x0 being fixed to their true values respectively ( Fig. 3.7).
The true value of x0 was 0.8. This time the exponential law is clearly visible
and covers 12 orders of magnitude.
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Figure 3.10: Example of a fit that yielded a rather wrong parameter estimate
(â=1.896) but nevertheless a very good correspondence between model and true
trajectory. It shows that the large error of the parameter estimate is not due to a
local minimum. The noise level was 10%.

3.5 Correlation between the Parameter Estimates

The non-exponential behaviour in Fig. 3.6 shall be examined in more detail
now.

The mechanism leading to Eq. (3.6) can not be the cause of the large
variances for long time series. While it can explain how the global minimum
becomes higher than another local minimum, one would expect that the
true parameters remain at least near a local minimum of χ2. Since the true
variables were supplied as starting guesses, the estimate can not converge
to a false minimum.

Plotting the estimated parameters against each other shows a strong
correlation between â and x̂0 ( Fig. 3.8). Therefore χ2 was examined as
a function of both parameters ( Fig. 3.9). The picture is characterised by
long narrow valleys in which the parameter vector can move nearly freely
without much change in the objective function.

Fig. 3.10 shows one of the fits that contributed to Fig. 3.6 and yielded
a rather wrong parameter estimate. N was 60 and the noise level was
10%. The true initial value was x0=-0.8075. The estimated parameters are
â=1.896 and x̂0=-0.8070. Astonishingly the trajectory is similar to the true
one all along the 60 points although the parameter deviates considerably
from the true value. Thus this is not a problem of local minima. The
suspicion arises that for each parameter a′, there is a transformation h of



3.5. CORRELATION 35

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

E
st

im
at

ed
 x

�

True x

Figure 3.11: Empirical representation of the self-similar function h. The figure
contains 104 points altogether. A small portion of them stems from unsuccessful
fits that do not reflect the transformation h. They can be identified as isolated
points. Most of them are located near the diagonal, since the true states were
supplied as starting guesses. The other points form bold lines, representing the
sought function. h is monotonic, but it has many discontinuities.

the state variable x to a new variable x′ that fulfils the logistic equation for
the parameter a′:

h(fa(x)) = fa′(h(x))

The transformation is depicted in a commutative diagram:

. . .xi−1
fa−−−−→ xi

fa−−−−→ xi+1. . .yh

yh

yh

. . .x′i−1

fa′−−−−→ x′i
fa′−−−−→ x′i+1. . .

Since the initial value is also affected by the transformation, deviations
of x0 are related to deviations of a, explaining the correlation between the
estimates of the two variables.

Power expansion approaches showed that there is at least no continuous
transformation of this kind. In order to conceive what is causing the wrong
estimates, noiseless data of length N=100 were fitted with the parameter a
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Figure 3.12: Same as Fig. 3.11, after subtracting the line of identity.

being fixed to the wrong value a′=1.95, so that only the initial value was a
free parameter. This was done 100 times, with the true initial value being
scanned from −0.85 to 1. In this way, true trajectories and fit trajectories
with a total of 104 points each were generated. They were plotted against
each other in Fig. 3.11. Despite isolated spurious points that are due to
unsuccessful fits, a clear image of the transformation function is discernible.
h turns out to be monotonic, but highly discontinuous. Near x = x′ = 0
the range contains a gap of size 0.257. Similar, but successively smaller
discontinuities occur at all inverse iterates of 0, {x|fn(x) = 0, n ∈ N},
leading to a self-similar structure. The deformations become more distinct
when x′ − x is plotted against x ( Fig. 3.12). The transformation is close
to the identity, though a′ deviates considerably from a. That means that a
large error in the parameter causes small deviations in the states. Reading
it the other way around, the algorithm compensates part of the noise in the
data by adjusting the parameter so that the transformation h imitates the
noise.

Having revealed the strong correlation between â and x̂0, the first point
in the list on page 24 has to be reconsidered. If â is highly correlated with
x̂0, its a priori distribution could have an effect on the estimated parameter.

The mechanism causing the correlation is not a unique property of the
logistic map. Similar transformations were found in the Moran-Ricker map
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f(x) = x ea(1−x). Moreover, it is not restricted to maps. Systems with
continuous time and state space could also possess such correlations, but
the corresponding transformations must be continuous since discontinuities
would cut the state space into non-contiguous parts.

3.6 Conclusion

This chapter examined to what extent the superior properties of the max-
imum likelihood estimator can be used to obtain accurate estimates of the
parameters of a chaotic time-discrete system. The logistic map was chosen
as a paradigmatic representative. Two problems turned out to aggravate
the task:

• The unknown initial value x0 is strongly correlated with the dynamic
parameter a. While a single parameter can be estimated with an
exponentially decreasing standard deviation, a simultaneous fit of both
variables improves only like 1/N , which is still much better than the
1/
√

N law achieved with other methods.

• The objective function is cluttered with local minima. Increasing N
does not increase their level relative to the global minimum, but makes
them sharper and adds even more of them. That means that errors
caused by noise on the first data points can not be compensated by
subsequent data points.

The latter point is a disadvantage of the maximum likelihood method. Its
superior asymptotic properties rely on the assumption that the minimum of
the objective function is actually found. If this can not be ensured, other
methods might be preferable.
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Chapter 4

Application to the
Q-switched CO2 Laser

The maximum likelihood approach for estimating parameters in dynamical
systems is feasible if a parametric model of the right-hand side is on-hand.
Regarding the CO2 laser, the so called four-level model (4LM) is well es-
tablished (Meyer-Bourbonneux et al. 1976; Ciofini and Meucci 1995). It
is a nonlinear, five-variable ODE with six unknown parameters that shall
be estimated from univariate time series of the intensity of a Q-switched
CO2 laser. The experiments were made at the Istituto Nazionale di Ottica
Applicata in Firenze.

The application of an analysis method to measured time series is a much
greater challenge than its test on simulated data. Because of partially un-
known experimental conditions, and due to the preference for simple models,
the dynamic equations are only an approximation of the actual dynamics.
The same is true for the observation equation. The application reported in
this chapter showed that the observation function is an essential part of the
model and that the absence of a proper description can easily lead to wrong
results.

For this reason, after the description of the experimental setup in the
first section, the complete preprocessing procedure is included in Section
4.2. Section 4.3 presents the dynamic model and derives theoretical relations
between the dynamic parameters and the initial values of the state vector,
that will be used to reduce the number of degrees of freedom. After testing
the procedure in Section 4.4, it is applied to ten records of measured data,
that have been recorded under different experimental conditions. Section
4.6 concludes with a summary.

39
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Figure 4.1: Experimental set-up. G: grating; LT: laser tube; PS: current-stabilised
power supply; EOM: electro-optic modulator; HVA: high-voltage amplifier; M:
spherical mirror; PZT: piezoelectric translator; D: detector; P: preamplifier; DO:
digital oscilloscope; WS: workstation. Quantities: i: discharge current; n: photon
density; I: laser intensity; V: detector voltage; y: recorded signal; TTL: EOM driver
signal.

4.1 Experimental Setup

The experimental setup ( Fig. 4.1) consists of a single-mode CO2 laser with
an intracavity electro-optic modulator (EOM) (Meucci et al. 1996). The
optical cavity, 1.35 m long, is defined by an 80% reflectivity spherical mirror
(radius of curvature 3.0 m) and by a grating blazed for 10.6 µm. The mirror,
acting as the cavity outcoupler, is mounted on a piezoelectric translator in
order to control the tuning between the cavity mode and the centre of the
molecular line. The active medium, a gas mixture of 14% CO2, 14% N2,
2% H2 and 70% He at an average pressure of 21 Torr, is contained in a
pyrex tube terminated by Brewster windows. The medium is excited by a
high-voltage DC discharge current. The power supply is highly stabilised
against current fluctuations such as those occurring during the Q-switch.
The current is stabilised to better than 0.01 mA.

At 6 ms intervals the EOM driver and the high-voltage amplifier provide
600 V pulses of 3 ms duration with a rise time shorter than 50 ns. At the
switch-on at time t = 0 a fast jump of the cavity loss rate K(t) from a higher
value K1 to a lower value K2 is induced. K2 =1.37 MHz was assumed in all
cases. This kind of steep external modulation induces the dynamic variables
to explore a large region of their phase space. In this way the measured time
series is supposed to contain a considerable amount of information about the
laser.

The intensity is detected with a Hg-Cd-Te photodiode and amplified.
The bandwidth of the detecting device is approximately 400 kHz. A time
series of length 64 ms, containing 10-11 Q-switch events, is recorded with a
digital oscilloscope having a resolution of 12 bit. The sampling frequency is
1 MHz. The TTL signal from the EOM driver is also recorded. Fig. 4.2
shows both time series. The vertical axis of the detector signal is inverted
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Figure 4.2: Measured time series of the detector signal and the TTL signal as
recorded by the digital oscilloscope. Discharge current i=5.22 mA. The detector
signal axis is inverted because low values correspond to high laser intensities. The
TTL signal is switched on at 6 ms intervals for 3 ms duration each. The cavity loss
rate is low when the TTL signal is high and vice versa.

because low values correspond to high laser intensities. The TTL signal is
high when the cavity losses K(t) are low.

After the Q-switch (on-state) the intensity describes a large spike, fol-
lowed by relaxation oscillations. At the end of the EOM pulse, K(t) jumps
back to K1 for another 3 ms (off-state) before the next Q-switch is induced.
For the estimation of parameters, only the first 500 µs after each Q-switch
will be used. The most important portions of the time series are the first
few relaxation oscillations after each Q-switch. They last for some 100 µs
and are not resolved in Fig. 4.2.

As the peak intensity depends on the value of the population inversion
which is proportional to the discharge current, the discharge current i is
chosen as the control parameter, repeating the procedure for 10 different
current values between 4.20 and 5.22 mA. The records were divided into
three groups with respect to their dynamical behaviour. The following table
gives an overview.

Regime Low Medium High
currents currents currents

Current i 4.20 4.40 4.80
[mA] 4.30 4.50 4.90

4.60 5.05
4.70 5.22

With increasing current a growth of the peak height is observed, accom-
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panied by a reduction of the delay time between the EOM pulse and the
spike (Meucci et al. 1992).

4.2 Preprocessing

This section describes all steps necessary to relate the dynamic variables of
the model to the recorded time series.

4.2.1 Baseline Correction

Using the TTL signal, the individual Q-switch events are identified and
cut out from the continuous time series. They are also called pulses in
the following. 500 points before each Q-switch are used to determine the
baseline for this pulse. From the 10-11 baselines of each record the ensemble
average B(i) and its standard deviation are computed and plotted in Fig.
4.3. For the six low and medium currents, B(i) is approximately constant,
indicating zero intensity. Its average

B̄ =
1
6

∑
B(i)

is given by a dashed line in Fig. 4.3. The variability between the records is
much larger than the error bars, indicating that it is mainly due to long term
drifts with correlation times that are longer than the record length (64 ms),
but shorter than the breaks between the measurement of the records. In
order to suppress these drifts as much as possible, each pulse is adjusted so
that its baseline vanishes.
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Figure 4.3: Baselines estimated from raw data for all currents. For high cur-
rents the baseline is non-vanishing, indicating that the laser does not switch off
completely.
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Beginning with i=4.80 mA the baseline increases with the current, in-
dicating a non-zero steady level in the off-state. Now the true baseline,
corresponding to zero intensity, is not known anymore. As a substitute, the
total average baseline B̄ of the six low and medium currents is used and each
pulse within a record for a high current i is adjusted such that its baseline is
B(i)−B̄. For high currents the error bars are larger because the steady-level
in the off-state depends on experimental parameters which are subject to
fluctuations in the discharge current. Finally all signals are inverted so that
higher values correspond to higher intensities.

4.2.2 Pulse Merging

Since the sampling frequency is limited to 1 MHz, the first peak after the
Q-switch contains only 10 data points for high currents. On the other hand,
the different pulses of a record have a very similar shape for medium and
high currents. It is therefore to be expected that they can be overlaid to
a single pulse containing all data points, thereby compensating for the low
sampling frequency.

Simple Alignment

While the baselines have already been adjusted as described earlier, the
time axes remain to be aligned among the pulses. Fig. 4.4 shows the result
when this is done by using the TTL signal as a trigger. The time at which
it crosses a threshold value, which is the mean between the on- and the
off-level, is taken as the origin of the time axis. Since the TTL signal has
the same sampling frequency and switches from off to on within much less
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Figure 4.4: Alignment of the pulses using the TTL signal as a trigger. The
aligned times are still integral multiples of the sampling interval. Discharge current
i=5.22 mA.
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Figure 4.5: Result of the internal alignment procedure. All data points lie almost
perfectly on a unique curve. The arrow illustrates the procedure taking the sec-
ond maximum as a threshold being crossed in the first decline. Discharge current
i=5.22 mA.

than 1 µs, the switch time can be detected only with an uncertainty of 1 µs.
Consequently the new time values are still integral multiples of the sampling
interval. So the TTL signal is an insufficient aid for this purpose. Instead
the following procedure is used to align the pulses.

Internal Alignment

• Determine the height h of the second maximum by quadratic interpo-
lation.

• Determine the trigger time t0 at which the decline after the first peak
crosses the threshold h, using linear interpolation.

• Define t0 as a temporary new origin of the time axis for this pulse.

The result is shown in Fig. 4.5 for the highest current. All data points
lie almost perfectly on a unique curve. The method works well for all high
and medium currents though the resulting curves are not as smooth as in
the example shown. They can be seen in Figs. 4.20 and 4.21 on page 64 and
65.

External Alignment

Regarding now the TTL signals in the new time coordinates, the time of the
Q-switch relative to the trigger time can be determined with an uncertainty
of about ±0.2 µs. It is used as the final origin of the time axis for this
record. This external alignment between the records is less important than
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Figure 4.6: Merged pulses including off-state phase for medium and high currents.
The currents are 4.40, 4.50, 4.60, 4.70, 4.80, 4.90, 5.05 and 5.22 mA from bottom to
top. The vertical lines at t=0 and t=3039 µs indicate the switch-on and switch-off
times respectively. The spikes shortly after the switch-on exceed the upper limit of
the vertical axis. The first relaxation oscillations are not visible in this figure.

the internal alignment between the pulses because the dynamical models
used are invariant under global time shifts.

For the low currents, the pulses are so variable that it does not make sense
to align them with each other. They are not merged into a single time series
but their time values are normalised by the simple alignment procedure
described above, using the TTL signal as a trigger. Since these records
exhibit slower dynamics than those for medium and high currents, the spikes
are represented by more points and thus the low sampling frequency is a
minor problem.

Fig. 4.6 shows the complete merged time series for all medium and high
discharge currents. The low currents are a special case that will be treated
separately. The switch-on and switch-off times are indicated by vertical lines.
The prominent first peaks after the Q-switch are cut off by the vertical range
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in order to emphasise the other features in this picture. After a few hundred
µs the intensity becomes constant, despite a slow increase that is ascribed
to temperature effects.

Following the switch-off, the measured intensities rise to a higher level
before they decrease to their respective baselines within 1 or 2 ms. This slow
switch-off behaviour reflects the properties of the EOM which is designed to
be very fast at the switch-on (time constant smaller than 50 ns) while the
switch-off characteristic is less important.

The last 1-2 ms before the following switch-on are characterised by a
slow decrease that is again ascribed to temperature effects. The off-phase
clarifies the distinction of medium and high discharge currents. For the
medium currents (four lowest curves), zero intensity is attained, while for
the high currents the baseline progressively increases.

In Meucci et al. (1991) the time interval to reach thermal equilibrium was
directly measured to be of the order of 3 ms for a voltage-stabilised power
supply. Fig. 4.6 suggests that in the case studied here, there are still slight
drifts after 3 ms. However, for the analysis of the dynamical behaviour of the
laser in the remainder of this chapter, only the first 500 µs after the Q-switch
will be utilised. The remaining part of the on-phase, representing a steady
level, does not contain any additional information. The off-phase is useless
due to the unknown characteristic of the EOM. Within this short fitting
interval, the temperature drifts are negligible. Therefore one can assume
that 3 ms are a sufficient time interval to reach an acceptable equilibrium
and then to switch on the laser again.

In Fig. 4.7 the integral of the laser intensity is plotted as a function of
the discharge current for medium and high currents. While the solid curve
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Figure 4.7: Total integrated output power as a function of the discharge current.
Solid line: integral of the laser intensity over the complete pulse. Dashed line:
integral from 0 to 4 ms.
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was obtained by integrating over the complete pulse, from one Q-switch
to the following, for the dashed curve the integration was restricted to the
interval between 0 and 4 ms which includes the on-state and the relaxation
to the off-state, but not the stationary part of the off-state. The figure
shows that the amount of energy radiated due to the non-zero baseline for
high currents is rather small. Thus the increase of the total power with the
current is mainly due to the increase of the on-state level.

4.2.3 Calibration Procedure and Observation Equation

The measurement process includes two further steps distorting the measured
laser intensity I. They must be taken into account either by preprocessing
or by means of the observation equation (2.2).

The detector voltage V is assumed to depend on I according to the
weakly nonlinear function

V = f(I) :=
I

1 + αI + βI2
(4.1)

with unknown constants α and β. This is a refinement of the nonlinearity
used in Varone et al. (1995) that is able to describe the observed behaviour
more precisely than the original formula. In the range of interest there exists
an inverse of f which is denoted f−1. Eq. (4.1) needs not to be understood
in terms of physical processes. The purpose of the following preprocessing is
to free the data from as many systematic errors as possible before analysing
them with the methods described in Chapter 2.

For low and medium currents the impact of the detector nonlinearity
is slight and therefore not identifiable from the data. However, since the
constants α and β do not depend on the current, they can be determined
from measurements with the highest current and then be used for all cur-
rents. For this purpose, two time series y and y′ were recorded under the
same experimental conditions except that for the second measurement the
detector was slightly moved aside such that only a fraction a of the light was
recorded. Striped quantities refer to this second data set in the following.
Combining Eq. (4.1) and its inverse yields

V ′ = f(I ′) = f(aI) = f(af−1(V )), (4.2)

i.e. V ′ is a function of V , parametrised by a, α and β.
Fig. 4.8 shows both signals after the external alignment procedure de-

scribed in Section 4.2.2. The upper curve is the same as in Fig. 4.5, despite
the external alignment. The lower one corresponds to the second measure-
ment with the displaced detector.

The internal alignment procedure was defined such that the trigger time
is invariant under the application of the detector nonlinearity, so that if the
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Figure 4.8: Comparison of time series for the highest current i=5.22 mA. All
pulses in a record were merged according to Section 4.2.2. Arrows indicate the
trigger times and the points in time where the signals take their maximum.

entire curve were subjected to a transformation similar to Eq. (4.1), the
trigger time would not change. Another point in time having this property
is the time where the signal takes its maximum. These times are indicated
by arrows in the figure.

The uncertainty left by the external alignment is ±0.05 µs and ±0.2 µs
for the upper and lower curve respectively. However, these uncertainties
concern only a global shift between the two records and not the distance
between the time of the maximum and the trigger time. From Fig. 4.8 it
can be clearly seen that this distance differs between the full measurement
and the down-sized version. The difference is more than 1 µs. The reason is
that the measured value y is not proportional to V in Eq. (4.1). The detector
circuit has a low pass characteristic that can be expressed as a linear ODE:

ẏ = τ−1(V − y), (4.3)

where y is the recorded signal and τ is the time constant of the detecting
device. The following paragraphs will show how this time constant can be
determined from the two measurements explored above.

If τ is known, Eq. (4.3) can be solved for V :

V = y + τ ẏ (4.4)

From the recorded time series y and y′ the first derivatives ẏ and ẏ′ were
calculated by means of a kernel estimator (Gasser et al. 1985) and then V
and V ′ were reconstructed using Eq. (4.4) for various values of τ .

As for the case τ = 0, V ′ = y′ is plotted versus V = y in Fig. 4.9A.
There is no unambiguous functional relationship. On the other hand, with
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Figure 4.9: Plot of V ′ versus V ; A: τ = 0, no unambiguous functional relationship
is present; B: τ = 2.35 µs, all points lie approximately on a single curve; dashed
line: best fit of Eq. (4.2) to these points.

τ = 2.35 µs, which was numerically found to be the optimal value, the
points (V ;V ′) are well described by a single curve ( Fig. 4.9B, solid line).
This value is in good agreement with the one obtained when measuring the
frequency cut-off with standard methods.

Now, α = 4.55 · 10−4, β = −9.03 · 10−9 and a = 0.081 were estimated
by a nonlinear fit of Eq. (4.2) to these points ( Fig. 4.9B, dashed line).
Moderate precision was sufficient for this calculation because these constants
represent only small corrections to the measurement curve. The constant τ
determined in this way was used to reconstruct I(t) for all measurements in
the remainder of this chapter. The nonlinearity function f in Eq. (4.1) was
directly taken into account as the observation function g in Eq. (2.2).

4.3 Theoretical Investigation

Following the observation model, this section describes all aspects of the
dynamic model.

4.3.1 Dynamical Model

Lasers are distinguished with respect to the number of differential equations
ruling their fundamental dynamics. According to this classification the CO2

laser is a class-B laser, being ruled by two equations for the photon den-
sity and the population inversion. The corresponding model is the two-level
model (Arecchi et al. 1982). In the past it became evident that upper und
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Figure 4.10: Schematic diagram of the four-level model after Meucci et al. (1992).

lower levels have different relaxation times and that there is considerable in-
teraction between the lasing levels and the other levels of the rotational man-
ifold (Dupré et al. 1975; Arecchi et al. 1988; Ciofini and Meucci 1995). The
resulting five-dimensional four-level model (4LM), as described in Meucci
et al. (1992), is used here as a model for the dynamics of the CO2-laser.
A schematic diagram of the model is shown in Fig. 4.10. It includes two
resonant levels whose populations are denoted by N1 and N2, respectively.
There are Z additional rotational levels in each vibrational band with total
population densities M1 and M2.

The populations decay reversibly into levels of the same band with the
rate constant γ′R, and irreversibly into other levels with rate constants γ1

and γ2 respectively. The flux from a lasing level Ni to its other rotational
levels is Zγ′RNi =: γRNi. The population inversion δ = N2−N1 is achieved
by a pump rate γ2P acting on each upper level.

The measured laser intensity is proportional to the photon number n =
|E|2. The complex electric field amplitude E is amplified by stimulated
emission with a field-matter-coupling constant G and damped with a cavity
loss parameter K(t) which is switched from a higher value K1 to a lower
value K2 at time zero. The time constant of this Q-switch is smaller than
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50 ns and can be neglected in the model. The 4LM reads

Ė = (−K(t) + 1
2Gδ)E + ξ(t) (4.5a)

Ṅ1 = −γRN1 + γ′RM1 + Gδn− γ1N1 (4.5b)

Ṅ2 = −γRN2 + γ′RM2 −Gδn− γ2N2 + γ2P (4.5c)

Ṁ1 = +γRN1 − γ′RM1 − γ1M1 (4.5d)

Ṁ2 = +γRN2 − γ′RM2 − γ2M2 + γ2ZP (4.5e)

with

δ = N2 −N1

γR = Zγ′R

n = |E|2

Eq. (4.5a) is a complex Ornstein-Uhlenbeck process. ξ(t) models the
spontaneous emission fluctuations. It is a complex stochastic function whose
real and imaginary parts are independent white Gaussian noise with zero
mean and variance s2 per unit time interval:

ξ(t) = ξ1(t) + iξ2(t) (4.6)
<ξi(t)> = 0

<ξi(t)ξj(t′)> = 0 for t 6= t′ or i 6= j

var
(∫ t+dt

t
ξi(t′)dt′

)
= s2dt.

where <.> denotes the expectation value and var(.) the variance with re-
spect to the probability distribution of ξ. s2 is related to the population
density of the upper lasing level through s2 = GN2.

In the following, stars will denote complex conjugation. The Langevin
equation for E, Eq. (4.5a) is transformed into one for n:

ṅ = ĖE∗ + EĖ∗

= (AE + ξ)E∗ + E(AE∗ + ξ∗) with A = −K + 1
2Gδ

= 2AEE∗ + 2Re{ξ∗E}
= 2An + 2

√
nRe{ξ∗eiφ},

where φ is the phase of E. Since ξ(t) has an isotropic two-dimensional
Gaussian distribution in the complex plane, the same is true for ξ∗(t) and
for ξ∗(t)eiφ. Therefore ξ̃(t) := Re{ξ∗(t)eiφ} is real-valued Gaussian white
noise with variance s2. It follows that

ṅ = 2An + 2
√

nξ̃ with <ξ̃(t)ξ̃(t′)> = s2δ(t− t′). (4.7)
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ξ̃(t) is not correlated with n(t), which is determined by the past history of
ξ(t). Therefore the expectation value of 2

√
nξ̃ vanishes and the deterministic

part of the ODE reads
d

dt
<n> = 2A<n>. (4.8)

It will be shown that in the region of interest, this equation is sufficient
for the modelling of measured time series. The stochastic noise can have a
macroscopic effect but it causes only a time shift of the model trajectory.
Therefore it will be neglected.

As a further change, the average population densities of the non-lasing
rotational levels mi = Mi/Z are used as dynamical variables instead of Mi,
because they have the same order of magnitude as Ni, thus rendering the
ODE integration and the optimisation numerically more efficient. Now the
four-level model reads:

ṅ = (−2K(t) + Gδ)n (4.9a)

Ṅ1 = −γRN1 + γRm1 + Gδn− γ1N1 (4.9b)

Ṅ2 = −γRN2 + γRm2 −Gδn− γ2N2 + γ2P (4.9c)
ṁ1 = +γ′RN1 − γ′Rm1 − γ1m1 (4.9d)
ṁ2 = +γ′RN2 − γ′Rm2 − γ2m2 + γ2P. (4.9e)

with

δ = N2 −N1

γR = Zγ′R.

It is important to observe that there is a symmetry between γ1 and γ2 in
the model. When a solution of Eq. (2.6a) with certain parameters is given,
the transformation

ñ = n (4.10a)

(Ñ1, Ñ2) = (P −N2, P −N1) (4.10b)
(m̃1, m̃2) = (P −m2, P −m1) (4.10c)

(γ̃1, γ̃2) = (γ2, γ1) (4.10d)

leads to another solution of Eq. (4.9) with the same observation. Thus
it cannot be decided from a measurement of n, whether the first or the
second solution is true. This is accounted for by restricting to solutions
with γ1 ≥ γ2.

The laser intensity I measured by the detector is proportional to the
photon density n inside the cavity:

I = k n. (4.11)
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The unknown coefficient k is eliminated by transforming n, Ni,Mi, P and
G−1 to new states and parameters by multiplication with k. The ODE sys-
tem is invariant under this gauge transformation but one has to keep in mind
that the transformed state variables and parameters contain an unknown
factor. In particular, G and P are not comparable with any theoretically
computed number. The qualitative behaviour of the model is visualised in
Fig. 4.14 on page 59.

4.3.2 Laser Startup Process

In the following the dynamics of the state vector from the Q-switch to the
first peak will be shown to go through a stochastic, a linear and a nonlinear
regime. The neglect of the stochastic term in the ODE and relations for the
initial values of the state vector will follow from these considerations.

Eq. (4.9) has the following fixed point:

n = 0 (4.12a)
N1 = m1 = 0 (4.12b)

δ = N2 = m2 = P. (4.12c)

As long as the laser net gain −2K + Gδ is negative, the fixed point is dy-
namically stable and is called the off-state. The stochastic part of Eq. (4.7)
causes small fluctuations around the fixed point. n = |E|2 has a χ2 distri-
bution with two degrees of freedom and mean

<n> =
2s2

2K1 −GP
. (4.13)

When K(t) is switched to its lower level, the gain becomes positive and
the fixed point becomes unstable. Now the stochastic fluctuations start up
an exponential increase of the photon number:

<n(t)> ∼ e(−2K2+GP )t. (4.14)

The stochastic regime ends, when the photon density has grown much
larger than s. Then further stochastic influence on the dynamics can be
neglected. At this time, n, N1 and m1 are still small and N2,m2 and δ can
be approximated by their steady-state values. Thus the ODE is reduced to
the linear system

d

dt

 n
N1

m1

 = L

 n
N1

m1

 (4.15)

with

L :=

 −2K2 + GP 0 0
GP −γR − γ1 γR

0 γ′R −γ′R − γ1

 . (4.16)
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Figure 4.11: Theoretical startup behaviour. The model was simulated with the
parameters that were estimated in Section 4.5.2 from measured data for i=4.60 mA.
The initial values were taken from Eq. (4.12). Then all components of the state
vector are plotted logarithmically. The legend lists the components in the same
order as they appear at the right end of the graph. Horizontal dotted line:
noise level apparent in the measured data set. Vertical dotted line: beginning
of fit interval (see Section 4.3.3).

The region of validity of Eq. (4.15) is called the linear regime.
The only positive eigenvalue of L is the initial laser net gain λ = −2K2+

GP . The amplitude of the spike and the time at which it occurs are strongly
dependent on λ. The state vector increases exponentially along the direction
of the corresponding eigenvector v, defined through

L · v = λ · v, (4.17)

until the effects of the nonlinear term Gδn in Eq. (4.9) become significant
and the nonlinear regime begins.

The exponential startup of the trajectories is visualised in Fig. 4.11
by a simulation with the parameters that were estimated in Section 4.5.2
for i=4.60 mA. Within 1 µs the populations N1 and m1 have taken their
proportions relative to n that are defined by Eq. (4.17). A long linear regime
follows in which these proportions are maintained and the populations of the
upper levels N2 and m2 are constant. At 7 µs the observable reaches a value
that is equivalent to the noise level of the measured data. After 9 µs the
nonlinear regime begins and the state vector deviates from the direction of
v.

The corresponding picture with measured data for medium and low cur-
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Figure 4.12: Startup for medium and low currents in semilogarithmic represen-
tation. The leftmost curves correspond to the currents i=4.70, 4.60, 4.50 and
4.40 mA, from left to right. Following are the pulses of the record with i=4.30 mA
and, in the right half of the figure, the pulses for i=4.20 mA. The dynamical range
of the signal is 2-3 orders of magnitude.

rents is shown in Fig. 4.12. Due to the observation noise, only a small
portion of the linear regime is visible. By extrapolating the straight lines
representing the linear regimes until they meet the vertical axis, one can
estimate the mean initial photon number in Eq. (4.13) and therefore the
level of the quantum noise s2. This will be done in Section 4.5.3. From the
visual inspection one can deduce that <n(t=0)> is much smaller than the
observation noise.

Since the direction of v is independent of ξ(t), only the length of the state
vector is affected by the noise term. However, a scaling of an exponential
increase is equivalent to a shift of the time axis, i.e. the trajectories of the
individual pulses are displaced against each other. This phenomenon can be
seen as pulse time jitter in the experiment. It disappears when the current
exceeds the threshold for laser activity in the off-phase. In this way the
boundary between medium and high currents can easily be detected in the
experiment. The turn-on statistics have been investigated in detail by many
authors (Arecchi et al. 1989; Balestri et al. 1991; Balle et al. 1991, 1994;
Ciofini et al. 1990; Grassi et al. 1994).
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For the further analysis, time shifts are not considered since they are
removed by the internal alignment procedure described on page 43. There-
fore the deterministic ODE Eq. (4.9) will be taken as the model ruling the
dynamical behaviour of the laser after the Q-switch.

4.3.3 Consistency of the Initial State Vector

In addition to the general methods outlined in Chapter 2 some strategies for
parameter estimation are specific to the considered laser model. A crucial
point is the beginning of the fit interval. When the initial values of all state
variables were treated as free parameters, the algorithm signalled rank defi-
ciency and the estimated unobserved components were unreasonable, i.e. it
was not possible to estimate all parameters and initial values simultaneously
from the given data. This problem can be solved by ensuring the initial state
to be consistent with the past history of the data, i.e. by incorporating ad-
ditional physical knowledge about the laser buildup. This will be done in
the following paragraphs. The theory of the laser startup process outlined
in Section 4.3.2 is important in this context.

a) Low and Medium Excitation Currents

For currents which are not too high, the system is in the off-state Eq. (4.12)
before the Q-switch. If the fit starts at t = 0, the steady-state can in
principle supply the initial values for the unobserved components. Unfortu-
nately, the trial trajectory would then be arbitrarily sensitive to numerical
fluctuations of the initial value n0, bringing instabilities into the iterative
optimisation process. Therefore the fit was started at the time at which the
intensity reaches 2% of its peak value. At this time the system is still in the
linear regime.

Accordingly, the proportions of n, N1 and m1 are given by the eigenvector
defined in Eq. (4.17). Eqs. (4.12c) and (4.17) are used to relate the initial
values of the unobserved components at the beginning of the fit interval to
n0 by means of equality constraints as described in Section 2.1.1.

b) High Excitation Currents

For high currents and resultingly large pump parameters, the situation is
different. The laser gain is then always positive, even during the breaks,
when the cavity losses are at their higher value K1. Consequently the laser
is not switched off and on, it is rather switched between two different on-
states. The data points prior to t = 0 correspond to a steady-state with
non-vanishing intensity. For these currents the fit start was placed at t =
0 and the steady-state equations that result when the right-hand sides of
Eqs. (4.9b-e) are set to zero, were used as constraints to the initial values.
In the same way the constraint ṅ = 0 could be demanded at t = 0, but it
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would not provide any additional information about the parameters because
Eq. (4.9a) contains the unknown constant K1. Conversely this will be used
to estimate the value of K1 in Section 4.5.3.

4.4 Simulation Study

The outcome of a fitting procedure is not always guaranteed to be meaning-
ful. There could be a transformation like the one in Eq. (4.10) that changes
the state vector and the parameters but leaves the observation unaffected.
It is also thinkable that there exists a continuous family of such transfor-
mations so that the parameter vector may be varied continuously without
a change of the objective function. In this way a continuous ambiguity is
created. Such redundancies are not always easily seen.

Therefore, in this section, the outlined methods are tested under condi-
tions that are as close as possible to realistic situations. A time series of the
laser intensity was simulated over T=500 µs with a sampling frequency of
11 MHz using Eqs. (4.9) and (4.1) with the parameters that were estimated
in Section 4.5 for the excitation current i = 4.80 mA. Similar results were
obtained for the other currents. Noise with the same properties as in the
measured data was added. Then the parameters G, γ1, γ2, γR, γ′R and P were
estimated as described in Chapter 2. Their starting guesses have been set to
twice the true values. The initial value n0 was another free parameter while
the other initial values were related to n0 according to Section 4.3.3b. The
constraints from Section 4.3.3a could be used as well because the baseline
n(t<0) is still very low for this current. Indeed the estimated parameters
were the same in this case.

Fig. 4.13 shows three stages of the iterative process. 40 subintervals were
used for the multiple shooting method. The density of the multiple shooting
mesh was adapted to the problem. The initial dynamics including the spike
show a fast change of the state variables over several orders of magnitude.
In contrast the relaxation oscillations evolve slowly to a steady-state. These
different conditions were accounted for by using many short subintervals for
the spike phase and rather long subintervals in the relaxation phase.

After 23 iterations the fit converged. The estimated parameters deviated
by at most 4% from the true values. Fig. 4.14 shows all five components
of the model trajectory. The ability to construct estimates of the hidden
variables of the physical system is one of the advantages of this modelling
procedure compared to delay embedding techniques.

4.5 Experimental Results

Each record contains 10 or 11 Q-switch pulses, sampled with a resolution
of 1 MHz. For each pulse the baseline was estimated by the last 500 points
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Figure 4.13: Iterative fit process for a simulated time series. Dots: data. Lines:
model trajectory. The time axis is logarithmic in order to make the first peak more
distinct. A: initial guess. The density of the multiple shooting mesh is changed to
a lower value at t = 4 µs. In the rear part the initial values “do not yet know”
that the Q-switch is already past. B: after 15 iterations. The trajectory is still
discontinuous. C: convergence after 23 iterations.
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Figure 4.14: Constructed time series of observed and unobserved components of
the state vector for the fit shown in Fig. 4.13. The laser intensity n exhibits a
large spike followed by relaxation oscillations to a steady level. The oscillations are
reflected in the population densities of the lasing levels Ni while they are damped
in the other levels of the rotational manifold.

before the Q-switch and subtracted from the signal. For high currents the
laser intensity is non-zero at t = 0. Therefore the baselines determined for
low and medium currents had to be averaged and substituted for the high
currents. The impact on the estimated parameters was never larger than
1 %.

α, β and τ were determined as described in Section 4.2.3. Then Eq. (4.4)
was used to correct all records for the low-pass characteristics. Eq. (4.1) was
directly taken into account as the observation equation. The preprocessed
data are given as points in the following figures.

4.5.1 Low Currents

For the lowest current, the dynamics differ considerably between the indi-
vidual pulses as seen in Fig. 4.15. To understand this phenomenon, the
initial laser net gain λ = −2K2 + GP is regarded. As mentioned in Section
4.3.2, the amplitude of the spike is strongly influenced by λ. The situation is
depicted in Fig. 4.16. P and therefore GP increase with the pump current,
as indicated by horizontal lines. 2K(t) is switched from K1 to the lower level
K2. For currents below i0=4.20 mA, no laser action can be observed at all,
implying that λ crosses zero below this current. For the lowest current i=i0,
GP is only slightly above 2K2. Small fluctuations in the pump current then
cause large relative variations in the laser net gain which is represented by
the hatched area between the two curves. As a consequence, the pulses have
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Figure 4.15: Measured data for the lowest pump current i=4.20 mA. The points
of each pulse are connected with lines.
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Figure 4.16: Depiction of the mechanism generating the large pulse variations for
low currents. Horizontal lines: increasing level of GP . Thick line: time course
of 2K(t) which is switched from K1 to the lower level K2. For the lowest current,
i=4.20 mA, the net gain −2K2 + GP (hatched) is only slightly positive.
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different heights and shapes.
This qualitative effect has already been understood theoretically and

confirmed experimentally (Balle et al. 1994; Grassi et al. 1994); however no
quantitative comparison between theory and experiment was made in these
studies. The approach here is able to model the measured data in full detail.
In a multiexperiment analysis all pulses were utilised simultaneously. Only
the pump parameter P was allowed to attain an individual value for each
pulse, while G, γ1, γ2, γR and γ′R were forced to be the same for all pulses.
The end of the fit interval was set to 300 µs after the Q-switch. Beyond this
point the signal is expected not to contain substantial information due to
the low signal-to-noise ratio.

As Fig. 4.17 shows, both the amplitudes and shapes of all pulses are
reproduced well. The estimated parameters are: G = 26.7 · 10−12s−1, γ1 =
25.7 kHz, γ2 = 4.79 kHz, γR = 42.0 kHz, γ′R = 24.9 kHz, P = 109 · 1015.

In Fig. 4.18 the estimated value of P and the resulting net gain λ are
plotted versus the experimental spike height. A clear monotonic functional
relationship can be seen. The empirical relative standard deviation of P is
only 1.4%, i.e. P does not make large use of its freedom to vary between
the records. On the other hand, λ has a relative standard deviation of 22%,
being responsible for the broad spectrum of spike shapes. If P were fixed
to be the same for all pulses, the model would only be able to produce 11
spikes with equal height and shape.
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Figure 4.17: Data (points) and model trajectories (lines) for i=4.20 mA. For the
sake of clarity only 6 of 11 pulses are shown. The large variability of the curves was
reproduced very well although only P and n0 were varied independently for each
pulse. The estimated parameters are given in the text.
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Figure 4.19: As Fig. 4.18, but for i=4.30 mA. The relative variation of P is the
same as above while that of λ is less.
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The good correspondence between measurements and model can be taken
as a strong argument for the validity of the four-level model for this exper-
imental condition. For i=4.30 mA the situation is similar, but less distinct
(see Fig. 4.19). In this case the standard deviation of P is again 1.4% while
that of λ is 6.5%.

A comparison between the estimated values of the pump parameter for
the two currents shows that the relative sensitivity of P with respect to
the discharge current 1

P
∂P
∂i is of the order of some mA−1. Thus a discharge

current uncertainty of 0.01 mA would suffice to induce a relative uncertainty
of P of several percent, so the estimated variance of P is in agreement with
the experimental conditions.

4.5.2 Medium and High Currents

For currents i=4.40 mA and higher, the variance in the spike height is
strongly reduced since the variance of the net gain is small compared with
its absolute value. Moreover the spike becomes narrower with increasing
current, thus being sampled by successively fewer data points. In order to
increase the sampling frequency, all pulses of a record were merged into
a single time series as described in Section 4.2.2. The data points were
gathered together with time values shifted such that each pulse had time
zero at a trigger point. The trigger point was the time at which the first
decline after the spike fell below the second maximum. For medium currents
the pulse shapes are not yet perfectly equal, thus the merged time series seem
to contain some noise as can be seen in Fig. 4.20.

The procedure for estimating the laser parameters was applied to each
record to estimate the parameters G, γ1, γ2, γR, γ′R and P . Data and best
fit trajectories are shown in Figs. 4.20 and 4.21. In order to emphasise the
spike region, a logarithmic abscissa is used. No rank deficiency was encoun-
tered by the algorithm. The model trajectories follow the experimental data
well. Especially the spikes are reproduced well. For high currents the second
peak is slightly overestimated and the relaxation oscillations that are coher-
ent over the entire time interval, are not imitated in detail by the model
trajectories.

Fig. 4.22 summarises the estimated parameters for medium and high cur-
rents. The statistical errors shown in the figure are calculated as described
in Section 2.1.2. They are based on the assumption that the observational
noise is uncorrelated. However, due to the low pass characteristic of the
detector and the pulse merging procedure, the noise has got a more compli-
cated correlation structure. Moreover systematic errors introduced by the
preprocessing are not reflected in the estimated confidence intervals. There-
fore the displayed error bars should not be over-interpreted.

For high currents the laser is continuously above the threshold as men-
tioned before. This qualitative difference between medium and high currents
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Figure 4.20: Medium currents: measured data (points) and best fit trajectories
(lines). The currents are 4.70, 4.60, 4.50 and 4.40 mA from left to right. The time
axis is logarithmic in order to make the first peaks more distinct. There is some
jitter in the data because the individual pulses of a record do not have exactly the
same shape.

was emphasised by drawing lines between points within, but not between
these two groups.

The rate constants γ1, γ2, γR and γ′R increase with the current, which
reveals their temperature dependence. γ1 was estimated to be much larger
than γ2 in accordance with Ciofini and Meucci (1995) and Zehnlé et al.
(1992). Thus, based on dynamically modelled measured time series, the
assumption γ1 = γ2 made in Arecchi et al. (1989) and Bromley et al. (1993)
must be rejected. In this context the application of the simpler two-level
model (Arecchi et al. 1988; Ciofini et al. 1990) turned out to be insufficient
to describe the given data adequately.

The field matter coupling constant G is inversely proportional to the
collisional broadening γ⊥ (Ciofini et al. 1990). G decreases with increasing
current. This can be understood as a temperature-induced increase of γ⊥.
Therefore 1/G was plotted together with the rate constants and indeed it
shows a similar behaviour.

The pump rate γ2P increases monotonically with the pump current as
expected. The effective number of rotational levels is not estimated directly,
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Figure 4.21: High currents: measured data (points) and best fit trajectories
(lines). The currents are 4.80, 4.90, 5.05 and 5.22 mA from bottom to top. The
baseline increases with increasing current.

it is calculated through Z = γR/γ′R. It increases with the current and has
values between 1 and 2, in contrast to thermodynamic considerations sug-
gesting higher values. Also, γ′R and γR are considerably smaller than the
values used in the literature (Christensen et al. 1969; Meyer-Bourbonneux
et al. 1976; Meucci et al. 1992; Ciofini and Meucci 1995). As the gas mixture,
its total pressure, the geometry of the discharge tube (internal diameter,
electrode shapes, etc.) and the excitation currents are different, it is diffi-
cult to compare estimated parameters with values obtained by spectroscopic
measurements. However, the low values estimated for Z are an indication of
an intrinsic weakness of the 4LM which is too simplified a model to represent
the complex molecular dynamics in a CO2 laser. Taking into account the
four unobserved components and the coupling between their initial values
and the parameters (Section 4.3.3), it is difficult to assess the impact of
model mis-specifications on the estimated parameters. Future work must be
devoted to an evaluation of refined models.

The comparison between the experimental results and the outcomes of
the fitting procedure remains essential. In this framework, the numerical
estimations confirm the essential role played by the incoherent processes
ruled by the collisional rates γR and γ′R.
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Figure 4.22: Estimated parameters with error bars as a function of the excitation
current for medium and high currents. From top to bottom: Top left axis: 1/G.
Top right axis: rate constants γR, γ′R, γ1 and γ2. Bottom left axis: number of
rotational levels Z. Bottom right axis: pump rate γ2P . 1/G and P contain an
unknown scaling factor that is the same for all records. The results and error bars
are discussed in the text.
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4.5.3 Estimation of nξ and K1

With the parameters of the model estimated, the laser startup process can
be analysed quantitatively. The initial laser net gain λ = −2K2+GP defines
the slope of the straight lines that characterise the rise of the photon density
in the semilogarithmic representation Fig. 4.12 on page 55. The mean initial
photon number is estimated by

nξ = <n(0)> ≈ n(t)e−λt, (4.18)

where (t, n(t)) is a point on the trajectory in the linear regime. nξ is smaller
than 10−5 for all medium and low currents, except for i=4.70 mA where it is
5 ·10−5. Thus nξ is eight orders of magnitudes lower than the spike intensity
and the linear regime covers at least six decades of the photon density.

As a final result, as mentioned in Section 4.3.3, the steady-state condition
ṅ = 0 is used to estimate the value K1 of the cavity losses before the Q-
switch for high currents. The result was between 2.42 and 2.54 kHz for all
four records, i.e. approximately the same value was estimated independently
in all these records.

4.6 Conclusion

In this chapter measured time series from a Q-switched CO2 laser were mod-
elled on the base of the four-level model (4LM). The unobserved dynamical
variables of a five-dimensional differential equation scheme were constructed
and the internal parameters were estimated. The method was tested on sim-
ulated data under realistic conditions and it was applied to ten records of
measured data with differing excitation currents.

For low pump currents a large variability of the spike shapes was ex-
plained quantitatively through rather small variations in the pump parame-
ter. For a wide range of higher pump currents the 4LM is able to reproduce
well the large spike as well as the long tails of the relaxation phase.

The study also confirms in an unequivocal and independent way the
important role of the rotational manifolds in the dynamics of a CO2 laser.
For the first time a quantitative correspondence between measured time
series from a CO2 laser and model trajectories from the four-level model
was obtained.
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Chapter 5

Delay Differential Equations

Delay systems are of practical importance in fields as different as engineering
science and biology. Arecchi et al. (1991) and Heil et al. (2000, 2001) inves-
tigated lasers with delayed feedback. Cooke and van den Driessche (1996)
treated infectious diseases models. De Gaetano and Arino (2000) modelled
the human glucose metabolism and Baker et al. (1998) examined cell growth
patterns, to name only some examples.

The estimation of parameters in delay differential equations (DDEs)
faces the same difficulty as for ODEs, the problem of local minima. In
Section 2.4.3 a multiple shooting method was developed for DDEs to solve
this problem. It will be applied to two examples in Sections 5.2 and 5.3.
But first, an alternative approach is examined critically.

5.1 The Delay Chain Approach

A widely used method for the approximation of a DDE is to introduce a
compartment z that has an input x1(t) and decays with a rate constant
k=τ−1 (Harrison 1995). In Fig. 5.1A the setting is drawn schematically.

kz

nk nk nk nkz � z � z � z �

Delay τx (t)�

x (t)�

x (t)�

x (t-τ)�

A

B

C

Figure 5.1: Three ways to model a delay. A: single compartment. B: delay chain,
here with length n=4. C: real delay.

69
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An example will be given in Section 5.1.3. A particle (an atom, molecule,
individual, etc.) entering into z at time zero will dwell there for a time that
is exponentially distributed. The mean dwell time is thus the same as in a
DDE with time lag τ ( Fig. 5.1C).

The method can be refined by using a delay chain of n compartments,
each one coupled to its successor with a rate constant k=nτ−1 ( Fig. 5.1B).
The resulting overall dwell time is the sum of n independent identically
distributed random variables. It has again the mean τ , but for n→∞ the
distribution becomes a Gaussian with the variance scaling as n−1 according
to the central limit theorem. Nevertheless, an essential difference from real
DDEs remains. A particle can dwell in the delay chain for an arbitrary time,
both for a negligible time and for a very long time. In nonlinear systems
these extremes can lead to a dynamic behaviour that is not found in the
corresponding DDE.

The following simulation study investigates critically, to what extent a
system whose true dynamics is of DDE type, can be modelled adequately
by means of a delay chain.

5.1.1 An Example from Infectious Disease Modelling

As an example an infectious disease model is chosen that was proposed to
describe propagation of phocine distemper virus in North Sea seal popu-
lations during an epidemic in 1980 (Swinton et al. 1998). The model is
schematically drawn in Fig. 5.2. Models of this kind are commonly re-
ferred to as SEIR models. The dynamic variables S, E, I, R,X represent the
populations of susceptible, exposed, infectious, recovered and dead seals re-
spectively. Exposed seals are those that are infected but not yet infectious.

S E I R

X

F1 F2 F3 F3(1-m)

F3m

Figure 5.2: Schematic diagram of the infectious disease model for seal populations.
S, E, I,R, X represent the populations of susceptible, exposed, infectious, recovered
and dead seals respectively. The number of infectious seals couples back into the
infection flux F1. F2 is a linear coupling, F3 is a linear coupling or a delay term for
the ODE model and the DDE model respectively. For the delay chain approach,
I is replaced by a chain of n compartments analogously to the z compartment in
Fig. 5.1.
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The corresponding ODEs read

Ṡ = − F1 with F1 = βSI/N (5.1a)

Ė = F1 − F2 F2 = γE (5.1b)

İ = F2 − F3 F3 = νI (5.1c)

Ṙ = F3(1−m) (5.1d)

X =
m

1−m
R N = S + E + I + R. (5.1e)

F1 describes the rate of seals newly infected to the virus. It is proportional to
the portion of infectious animals I/N , where N is the total living population.

The external influence leading to the outbreak of the disease is assumed
to be limited to a short time interval before the first data point, being
reflected in a small non-zero initial value of E. I, R and X can be assumed
to be zero at t=0, while S contains initially the largest portion of individuals.

E = E0 (5.2a)
S = S0 (5.2b)

I = R = X = 0. (5.2c)

F2 describes the transition from exposed to infectious. Finally, F3 de-
scribes the end of the infectious period due to recovery or death. This flux
is shared out between X and R in fixed portions m and 1−m. The variable
X can be computed statically from R. X has no influence on the system,
but it is the only observable. The growth of the population is not included
in the model. It can be neglected on the time scales considered.

In order to examine whether the ODE model is a reasonable description
of the delay dynamics, both F2 and F3 can be considered to be replaced
with delay terms:

F2(t) = F1(t− τlat) (5.3)
F3(t) = F2(t− τ), (5.4)

where τlat and τ are the latent and the infectious period respectively. Since
the former is usually much shorter than the latter, Eq. (5.3) is expected
to have a smaller impact on the overall dynamics than Eq. (5.4). For this
reason and in order to simplify the following considerations, only the latter
is used to replace F3 in Eq. (5.1c) and to convert the ODE into a DDE.
This model is far from being a complete and accurate description of the real
situation. However, it is good enough for examining the adequacy of ODE
techniques to emulate the dynamic behaviour.
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5.1.2 Modelling with ODEs

A time series of length T=150 d (days) was simulated, using Eqs. (5.1)
and (5.4) and the parameters β=0.179 d−1, γ=0.1333 d−1, m=0.7, τ=10 d,
S0=100, E0=10. The parameters were taken from a fit of the ODE model
to a time series observed during the 1980s epidemic. No noise was added
and the sampling interval (3 d) was chosen to be shorter than in the original
data in order to underline the impact of the model mis-specification.

Then the X component of the data was analysed using the ODE model.
The quasi-Newton method was used for the minimisation. Owing to large
residuals, the Gauss-Newton method failed to converge frequently.

E0, β, γ and m were fixed to the values used for generating the data.
The initial values of I and R were fixed to zero according to Eq. (5.2c).
The parameter ν and the initial value of S were free parameters. They were
estimated as S0=80.8 and ν=0.0901 d−1. The resulting model trajectories
are compared with the simulated curves in Fig. 5.3.

The X component of the model trajectory resembles the simulation.
However, considering the fact that only F3 is mis-specified, the correspon-
dence is poor. The initial value of the S component was underestimated
by 20%. The final value S(T ) is only 1

6 of the true value. The other com-
ponents E and I have similar amplitudes to, but different shapes than the
true curves. For all components it is noticeable that in the fitted model,
the maximum of the epidemic occurs considerably later than in the simula-
tion. This shows that essential properties of the true dynamics are distorted
by the approximation. One could object that the outcome of the compar-
ison could possibly be more favourable if more than two parameters had
been optimised. However, this option would not remove, but only hide the
discrepancies.

5.1.3 Modelling with the Delay Chain Model

After the simple ODE model turned out to be an insufficient approximation,
the delay chain approach presented above was applied to the I compartment
of the infectious disease model. The dynamic variable I was replaced by a
chain of n variables I1, . . . , In and Eqs. (5.1c and d) were replaced by the
following ODEs:

İ1 = F2 −G1 with Gi = nνIi (5.5a)

İ2 = G1 −G2 (5.5b)
...

İn = Gn−1 −Gn (5.5c)

Ṙ = Gn(1−m). (5.5d)

The number of infectious seals is given by I = I1 + . . . + In.
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Figure 5.3: Fit of the ODE model to data simulated with the DDE model. The
parameters are given in the text. For the fit only the X component was used. At the
beginning the curves lack smoothness because of the low sampling frequency. The
R components of the simulation and the fit are not shown since R is proportional
to X. Result: S is considerably underestimated and the maximum of the epidemic
occurs later than in the simulation.
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Figure 5.4: Same simulation as in Fig. 5.3, fitted with the delay chain model
with n=4. Result: though the observable is well reproduced, S is still clearly
underestimated. The E and I components correspond much better to the simulated
curves than for n=1.
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Figure 5.5: Final value of the S compartment as a function of the delay chain
length. Open circles: estimated S(T ). Broken line: true value. It is slowly
approached. Solid line: phenomenological formula Eq. (5.6).

For n=1 the model is identical to the simple ODE model used above.
The analysis described in the preceding section was repeated with this model
for various lengths of the delay chain. With increasing n the correspondence
between simulation and fit trajectories becomes progressively better. As an
example the outcome for n=4 is shown in Fig. 5.4. Though the observable
is well reproduced, S is still significantly underestimated.

One of the details of the true dynamics that is not reproduced well,
is the number of susceptible seals at the end of the epidemic, S(T ). An
interesting question is how long the chain must be in order to reproduce
all such details with satisfying accuracy. In Fig. 5.5, S(T ) is shown as
a function of the chain length. As expected, it approaches the true value
Strue(T ) with increasing n. However, a significant discrepancy exists even
for n=25, which is far beyond the limits of practical usefulness.

A phenomenological analysis shows that the error Strue(T ) − S(T ) can
be described almost perfectly as the reciprocal of a linear function of n:

S(T ) ≈ Strue −
32.52

n + 0.6652
(5.6)

5.1.4 Discussion

This section demonstrated that the delay chain technique can be used to
approximate a DDE containing a moderate nonlinearity by an ODE model.
However, the model mis-specification leads to systematic errors that do not
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diminish rapidly with increasing length of the chain. A final evaluation of
the usefulness of this method depends on the specific system one wants to
examine. For highly nonlinear systems it is presumably not suited. On the
other hand, biological systems with time lags like the one used as an example
here, could be candidates. Typically they are not pure delay systems, since
the time lags vary between individual subjects. The delay element is rather
of integro-differential type which is something in between ODEs and DDEs
from the viewpoint of dwell time distributions. Therefore the delay chain
approach is possibly less harmful in some of these systems. Nevertheless the
impact of such approximations should be monitored carefully.

5.2 Estimating Parameters of the
Mackey Glass System

In this section, the algorithm for estimating parameters in DDEs developed
in Section 2.4 is applied to the well-known Mackey-Glass equation

ẋ =
axτ

1 + xc
τ

− bx. (5.7)

It was originally introduced as a model of blood generation for patients with
leukemia (Mackey and Glass 1977). Since then it has become a standard
system for the exploration of high-dimensional chaos and for the evaluation
of methods of chaotic time-series analysis (Kittel et al. 1995; Farmer 1982).

Stationary time series were simulated using Eq. (5.7) with the standard
parameters a=0.2, b=0.1, c=10, τ=30 and the sampling interval ∆t=1. The
dynamics was initialised with a constant initial curve h0(t)=0.8. A transient
period of length 10000 at the beginning was skipped. Fig. 5.6 shows a noise-
free time series of length 5000.
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Figure 5.6: Time series of the Mackey-Glass system. Parameters a=0.2, b=0.1,
c=10, time lag τ=30.
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White Gaussian noise with standard deviation σ=0.14 was added to the
data, corresponding to a noise level of 50%. At this noise level, negative
data points occur spuriously and cause instabilities when they are used to
get starting guesses for the initial curves. Therefore the state vector was
forced to be positive by means of inequality constraints as described on
page 6.

5.2.1 Known Time Lag

The time lag is more difficult to estimate than the other parameters since
it has a complex influence on the dynamics. Therefore this challenge is
deferred to Section 5.2.2. For now, τ is assumed to be known.

The parameters a, b and c were estimated from a segment of 1000 data
points. The multiple shooting method was applied with 33 subintervals, each
having a spline segment of length 30, containing 11 spline knots, placed at
every third data point. The data segments had the same length. So, the
constants defined in Section 2.4.3 are d=3, K=10, D=Kd=30 and M=33.
The starting guesses for the parameters were set to ten-times the true values.

Fig. 5.7 shows three stages of the iterative optimisation procedure. The
initial situation is plotted in panel A. The trajectories of the individual mul-
tiple shooting intervals are simply overlapping, so that at each point except
those at the boundaries, two trajectories can be seen. The cubic splines
describing the initial curves were set up to go through the data points at
the knots. Then the DDE was integrated over each data segment. In the
first phase, the spline variables were held fixed and the parameters were op-
timised. Panel B shows the situation when the algorithm had converged for
the first time after 7 iterations. The true trajectory is already imitated well.
At this stage the estimated parameters were a=0.189, b=0.0910, c=8.97. In
the second phase the spline variables were fitted together with the param-
eters. After 11 additional iterations the algorithm converged finally (panel
C). Now the model trajectories seem to be perfectly continuous. That means
that the spline knots are dense enough to give a reasonable representation
of the rear segments of the preceding trajectories. The final estimates of the
parameters were a=0.199, b=0.100 and c=9.93, i.e. , no parameter deviated
by more than 1% from its true value.

In Fig. 5.8A the fit trajectory is compared with the true trajectory. They
are virtually identical over the entire interval, except for the beginning. In
order to inspect the discrepancies in more detail, the difference between the
two curves is plotted in panel B. The errors are largest in the very first spline
segment. The spline variables of the first segment can not be estimated with
high accuracy because the subsequent dynamics is not sensitive to all linear
combinations of them, as mentioned at the end of Section 2.4.3.
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Figure 5.7: Estimation of the parameters a, b and c from a noisy time series of
the Mackey-Glass system for known time lag. Points: simulated data. True pa-
rameters: a=0.2, b=0.1, c=10, time lag τ=30, noise level: 50%, sampling interval:
∆t=1. Lines: model trajectories. At each time two trajectories are overlapping.
A: initial situation. Starting guesses of the parameters: a=2, b=1, c=100. B:
end of the first phase, in which the spline variables were fixed, after 7 iterations.
Parameters at this time: a=0.189, b=0.0910, c=8.97. C: final solution after 11 ad-
ditional iterations, virtually continuous. Estimated parameters: a=0.199, b=0.100
and c=9.93.
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Figure 5.8: A: comparison of the estimated trajectory shown in Fig. 5.7C (bold
broken line) with the true trajectory (thin solid line). B: difference between
the two trajectories. The largest errors occur in the very first spline segment.

5.2.2 Unknown Time Lag

Up to now the time lag τ was assumed to be known. This is not unreason-
able since various concepts for the estimation of the delay time have been
reported (Kember and Fowler 1993; Bünner et al. 1996; Ellner et al. 1997;
Voss and Kurths 1997, 1999). Nevertheless it is desirable to estimate τ in
the same way as the other parameters. Mathematically this is not a prob-
lem; the sensitivity equations have only to be extended by the extra term in
Eq. (2.17). However, the dynamics is much more sensitive to τ than to the
other parameters. The intrinsic oscillations of the time series translate into
fluctuations of the objective function with respect to τ . When the starting
guess of τ deviates from the true time lag by an amount that is comparable
to typical time scales of the system, then the parameter vector is likely to be
separated from the true vector by a barrier of the cost function. The sensi-
tivity equations are themselves a DDE with the time lag τ . When this time
lag is mis-specified, they provide misleading information for the minimisa-
tion process. The situation is similar to that of the initial-value approach.
There the multiple shooting method solved the problem by dividing the fit
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interval and thereby shortening the length of continuous trajectories. In the
case of DDEs this would not help, since it does not make sense to make the
trajectories shorter than the time lag.

Despite these problems, the estimation of τ works remarkably well. The
simulation made in the preceding section was repeated under the same condi-
tions except that τ was set to 30− π

4 = 29.2146, in order to demonstrate that
time lags that are not multiples of the sampling interval can be estimated
as well. Again 50% measurement noise was added and the four parameters
were estimated by the multiple shooting method. The starting guesses for
the parameters a, b and c were again set to ten-times the true values, while
τ was set to 60. Accordingly the parameters for the setup of the multiple
shooting intervals were d=3, K=20, D=Kd=60 and M=16. The conver-
gence in phase one was reached after 29 iterations, the final convergence after
14 additional iterations. The estimated parameters were a=0.195, b=0.0985,
c=9.97 and τ=29.20. The fact that τ is a delicate parameter is reflected in
its extraordinarily high accuracy. Its relative error is only 0.05%. True tra-
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Figure 5.9: Estimation of all four parameters from noisy data. A: simulated data
(points), true trajectory (thin solid line) and model trajectory (bold broken
line). Only slight discrepancies are visible in the first few oscillations. B: difference
between the two trajectories.
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jectory, data and model trajectory can be seen in Fig. 5.9. Again a very
good correspondence between model and true trajectory is achieved.

5.2.3 Systematic Test with Random Starting Guesses

The results presented in the preceding sections are only examples. They
are not intended to claim that the method would succeed in estimating the
parameters with high accuracy in all instances. To evaluate the performance
and the reliability of the method, a systematic simulation study is made in
this section.

One thousand different noisy time series of length 5001 were generated
with the parameters a0=0.2, b0=0.1, c0=10, and a time lag τ0=29.2146. For
the simulation, a constant initial curve h0(t)=x0 was used and a transient
period of length 10000 was skipped as before, but now x0 was a random num-
ber, uniformly distributed in [0:1]. Thereby not only the noisy time series
but also the true trajectory was different in each pass. After the simulation
the algorithm for estimating the parameters was applied as demonstrated
above. The starting guesses for the parameters were drawn randomly from
the following probability densities:

ρa(a) =
1
a0

exp(− a

a0
) for a > 0 (5.8a)

ρb(b) =
1
b0

exp(− b

b0
) for b > 0 (5.8b)

ρc(c) =
1

c0 − 1
exp(− c− 1

c0 − 1
) for c > 1 (5.8c)

ρτ (τ) = 0.1 for 25 <= τ < 35. (5.8d)

The exponential distributions of a and b allowed large deviations from
the true values. The parameter c must not be greater than one, otherwise
the sensitivity equations would be divergent. Therefore the exponential
distribution was modified to satisfy this constraint. The expectation values
for these three distributions are the respective true parameters. The starting
guess for τ was uniformly distributed in the interval Iτ = [25; 35].

The method succeeded in estimating the parameters within 50 iterations
in 852 out of 1000 trials. For the other realizations it failed to converge
within this limit. Considering the rather adverse conditions this is a good
result. Fig. 5.10 shows all starting guesses that were used and indicates
which of them led to a successful fit and which not. There is no indication
of a correlation between the starting guess and the success of the fit.

The estimated parameters from the successful trials are summarised in
Fig. 5.11. Only a single real out-lier can be seen at index 624, i.e. the

1 The length was reduced to save computation time. The entire simulation study took
about 10 hours on a 650 MHz Pentium III.
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Figure 5.10: Visualisation of the radius of convergence of the method. Each point
in these figures displays the starting guesses for one of one thousand realizations.
The true parameter values are indicated with lines. Upper panel: parameters a
and b. Lower panel: parameters c and τ . Due to the exponential distributions,
very large parameter values occurred. However, they seem not to have led to
significantly more unsuccessful fits.
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Figure 5.11: Summary of estimated parameters. Symbols: estimated parameters
as indicated in the legend. Solid lines: true values.

algorithm rarely signals convergence when it is actually trapped in a clear
local minimum. This is an important advantage of the method. A missing
result is much better than a misleading result. It offers the opportunity
to try different starting guesses or to examine another segment of the time
series, if available. Table 5.1 shows the mean estimated parameters and their
standard deviation. All parameters were estimated with a relative accuracy
of 5%, except τ which was determined with a ten-times better precision.
The reason is the high sensitivity of the dynamics to changes in τ . So the
investment made in an accurate starting guess for τ is paid back in the form
of an extraordinarily high precision of the estimate.

Parameter True value Mean ± Standard deviation rel.error
a 0.2 0.2009 ± 0.010 5%
b 0.1 0.1004 ± 0.0054 5%
c 10 10.09 ± 0.52 5%
τ 29.2146 29.22 ± 0.16 0.5%

Table 5.1: Mean estimated parameters and standard deviations, calculated from
852 successful applications of the method.
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Parameter True value Mean ± Standard deviation rel.error
a 0.2 0.2001 ± 0.002 1%
b 0.1 0.1001 ± 0.001 1%
c 10 10.005 ± 0.07 0.7%
τ 29.2146 29.2146 ± 0.025 0.09%

Table 5.2: Same as Table 5.1 for a noise level of 10%. Taking all realizations
together, τ could be determined with a relative accuracy of 0.003%.

The simulation study was repeated with a noise level of 10% (see Table
5.2). In this case only for three of one thousand realizations the procedure
failed. The precision of the estimated parameters is even higher, as expected.

When the range Iτ of starting guesses for τ was chosen wider, the method
failed to converge for significantly more realizations. If the time lag had
a large uncertainty in a realistic setting, one would apply the method for
several different starting guesses. The true time lag has a rather large “basin
of attraction” in which the starting guess may be located in order to converge
to the true value. Therefore a rather small number of different time lags
must be tried. Most other methods have to scan the entire range of possible
values.

5.2.4 Summary

In this section the multiple shooting procedure developed in Section 2.4 was
applied to the Mackey-Glass system with time lag 30. For rather high levels
of observation noise it yields very accurate estimates of all parameters and
the underlying true trajectory is well reconstructed. The method rarely
signals convergence when the result is clearly wrong, and it converges to
the true parameters from rather inaccurate starting guesses. In particular,
the starting guesses for a, b and even c had often even a different order of
magnitude from the respective true parameters. The time lag was estimated
with an accuracy of 0.5% from 500 data points with 50% measurement noise.
It does not need to be a multiple of the sampling interval and the starting
guess may deviate considerably from the true value.

5.3 Application to Measured Data

As a final example the method is applied to a time series from a chaotic
electronic oscillator. The experimental setup is drawn in Fig. 5.12. It
is part of an experiment realizing a method to anticipate future states of
nonlinear time-delayed feedback systems (Voss 2001). A transistor and an
amplifier are used to construct a nonlinear response function f . The low-
pass filtered output (x) is fed into a delay element coupled back into the
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Figure 5.12: Schematic diagram of the electronic circuit used by Voss (2001). The
low-pass filter (R1 and C) and the delay line are inspired by Kittel et al. (1998).
The nonlinearity is built up of the transistor T1, the adjustable amplifier OA1 and
the resistors R2-R7. Electronic components: Delay line: bucket brigade line
MN 3011 with 3328 stages, triggered by MN 3101 (both National Panasonic); OA1:
LM 324N; C=660 pF; R1=470 kΩ, R2=100 kΩ lin., R3=22 kΩ, R4=4.7 kΩ, R5=10
kΩ, R6=1 kΩ. R7=47 kΩ, T1: BC 238C.

input (xτ ). The dynamical model reads

ẋ = −αx + f(xτ ). (5.9)

The nonlinear response function f is parameterised by the third order poly-
nomial

f(x) = a0 + a1x + a2x
2 + a3x

3 (5.10)

A time series of length 100 ms was recorded with a sampling interval of
0.01 ms. A glance at the time series shows that it is highly oversampled.
The sampling interval pretends to provide information that actually does
not exist in the time series due to low-pass filtering. Therefore only every
10th data point was used for the analysis in the following. Fig. 5.13 shows
that this is sufficient to reproduce all relevant features of the original time
series. The parameter estimates did not change by more than 0.03% due to
the reduction.

The dynamical parameters are the time lag τ , the damping factor α
and the coefficients ai. No a priori information about the parameters was
utilised. The most difficult task is the coarse estimation of the delay time.
The time series shows oscillations with a period of about 4 ms, indicating
a time lag in the millisecond range. Therefore the delay parameter was
scanned from 1 ms to 20 ms in steps of 1 ms. Each value was used as a
starting guess τ0 and the estimation procedure was carried out as described
earlier. The starting guesses for all other parameters were simply set to
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Figure 5.13: Clipping of the time series showing that it is oversampled. Dots:
original data. Circles: data points used for fitting.

zero. The length of the spline segments was chosen 5 ms longer than τ0 in
order to allow for some variation of τ .

For τ0=12 and 13 ms the method converged within 20 iterations to
the values τ=13.3 ms, α=3.7 kHz, a0=0.8864 VkHz, a1=−3.982 kHz, a2=
−15.26 V−1kHz and a3=−11.54 V−2kHz. For other starting guesses no con-
vergence was achieved or the final value of the objective function was more
than 100 times higher than for the successful fits.

Having found good estimates for all parameters, the procedure was
started again without multiple shooting and with the length of the spline
segment adjusted to τ . The final estimates are τ=13.28 ms, α=3.443 kHz,
a0=0.8332 VkHz, a1=−3.775 kHz, a2=−14.36 V−1kHz and a3=−10.67 V−2

kHz. The model trajectory is shown together with the time series in Fig.
5.14. Hardly any difference can be seen in the entire interval. In order to
facilitate a comparison, the attractor of the system is reconstructed by a
delay embedding in Fig. 5.15, both for the measured time series and for
the model trajectory. The model attractor resembles well the attractor re-
constructed from the data, except for some features that are visible in the
right-hand image, but hidden by noise on the left. Thus the modelling pro-
cedure achieves even more than a perfect imitation of the measured data: it
performs noise reduction.
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Figure 5.14: Comparison of best fit trajectory (solid line) and observed time
series (points).
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Figure 5.15: Phase space reconstruction of the attractor of the system. A: from
observed time series. B: from model trajectory.
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Chapter 6

Summary

This thesis examined methods for estimating parameters in deterministic
dynamical systems. The maximum likelihood approach that was chosen in
view of its superior asymptotic properties, facilitated a common description
of the parameter estimation problem for some rather different classes of
systems.

First of all time-discrete systems were regarded in order to plumb the
strengths and limits of the maximum likelihood approach. The logistic map
was used as a well studied canonical example. The essential point in the
maximum likelihood approach is that it takes into account the information
that there is a true trajectory underlying the measurements. The difficulty is
to find it without being trapped in a local minimum of the objective function
in the parameter space. The multiple shooting technique, developed by Bock
for the class of ordinary differential equations (ODEs), was transferred to
time-discrete systems in order to circumvent this problem.

This technique turned out to be of particular importance for the logistic
map since the conventional initial-value approach failed to converge to the
global minimum when the starting guess for the unknown parameter devi-
ated slightly from its true value. This property of the logistic map could be
understood as a consequence of the heavily jagged objective function. The
expectation that this characteristic of chaotic maps could be useful to obtain
accurate estimates of the parameters, was confirmed in the case of a single
variable being estimated from noisy time series. The standard deviation of
the estimate scaled as e−λN , where λ is the Lyapunov exponent of the map
and N is the length of the time series. However, when both the initial value
of the trajectory and the dynamic parameter were estimated, which is the
realistic setting, then the exponential law changed to a 1/N -law. This is
still better than the 1/

√
N scaling achieved with conventional methods that

ignore the underlying dynamic nature of the data.
Finally the strong correlation between the initial value and the parameter

of the logistic map could be understood in terms of a highly discontinuous

89
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self-similar function that transforms the states of the system so that they
fulfil the same dynamic equation for a different parameter.

In contrast to the pedagogical example of the logistic map, Chapter
4 described a practical application of the parameter estimation method.
Measured data from a CO2 laser were modelled by a nonlinear system of five
differential equations derived from first principles. It contains six unknown
parameters and four unobserved components. The analysis of measured data
involves difficulties and subtleties that are not found with simulated time
series. Among them are non-stationarities, limits of the detector system
and model mis-specifications. The analysis underlined that the observation
equation is as important a part of the model as the dynamical equations. If
the observation process is modelled incorrectly, unpredictable errors in the
fitting procedure can result.

A meticulous investigation of the time series recorded under two different
conditions revealed that the detector circuit used in the experiment had
a significant low-pass characteristic in addition to its nonlinearity. These
properties could be determined in a calibration procedure. They were used
to choose a proper pre-processing procedure and to define the observation
equation.

Another important element in the modelling procedure was the reduction
of the number of fit variables by means of equality constraints that were
derived from an analytical description of the laser startup process. These
constraints that represent physical knowledge about the laser, related the
initial values of the unobserved components to the initial photon number and
the dynamic parameters. In this way the unobserved dynamical variables
were constructed and the internal parameters of the laser were estimated.
The method was tested on simulated data under realistic conditions and
applied to ten records of measured data with differing excitation currents.

For low pump currents, a large variability of the pulse shapes could be
explained through rather small variations in the pump parameter. For a
wide range of higher pump currents the four-level model was confirmed as
an appropriate model to describe the given data. The study confirmed the
important role of the rotational manifolds in the dynamics of a CO2 laser.
For the first time a quantitative correspondence between measured time
series from a CO2 laser and model trajectories from the four-level model
was obtained.

The last chapter was devoted to delay differential equations (DDEs).
This class of dynamical systems is used to describe a large variety of appli-
cations in physics, biology, medicine and engineering science, among others.
The delay chain approach to approximate a DDE with an ODE was shown
to be practical to some extent but to lead to systematic errors in the result
that vanish only as n−1 with increasing length of the delay chain. Therefore
it is recommended to use a DDE approach to model delay systems.

Next the estimation of parameters of a canonical DDE example, the
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Mackey-Glass equation, was investigated. For this purpose a multiple shoot-
ing technique for DDEs was developed. Due to the theoretically infinite
phase space of a DDE, there is no straightforward approach to transfer the
concept of the continuity constraints to DDEs. The proposed procedure pa-
rameterises the initial curve of each subinterval by cubic splines and forces
the projection of the solution of the preceding interval onto the space of
spline functions to be identical to them.

Using this procedure, all parameters of the Mackey-Glass system with
time lag 30 could be estimated for rather high levels of observation noise.
Moreover, the method has a large radius of convergence, i.e. the starting
guesses for the parameters were allowed to deviate from the true values by
a factor of ten, except for the delay parameter that was allowed to vary
between 25 and 35.

The time lag does not need to be a multiple of the sampling interval,
as in many other methods. Since Chapter 3 showed that a disadvantage of
the maximum likelihood approach is the extremely complex structure of the
objective function, a simulation study was performed evaluating the actual
reliability of the method. It turned out to yield reliable and precise estimates
of all parameters for fairly high noise levels.

Finally, the method was applied to measured data from an electronic
circuit, demonstrating that it is well suited to yield accurate estimates of
the parameters of an experimental delayed-feedback system.

The examples presented in this thesis have demonstrated the power of
the maximum likelihood method to extract as much information as possible
from measurements of a dynamical system. Parameters are estimated with
the highest precision and physical properties of the underlying system are
identified. This approach of investigating dynamical systems by modelling
“in vivo” experiments is expected to enable detailed insight into numerous
challenging complex phenomena.
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Appendix A

Equivalence of Logistic Map,
Tent Map and Shift Map

This appendix provides explicit transformations between two versions fx

and fz of the logistic map (with special parameters), the tent map ft and
the shift map fs. All maps, their variables and the relations between them
are depicted in the following commutative diagram:

x
hx←−−−− z

hz←−−−− t
hs−−−−→ syfx

yfz

yft

yfs

x′
hx←−−−− z′

hz←−−−− t′
hs−−−−→ s′

hx, hz and hs are invertible transformations. Define the logistic map in
the form used in Chapter 3

x′ = fx(x) = 1− ax2, a ∈ [1.5; 2], (A.1)

the logistic map in its standard form

z′ = fz(z) = rz(1− z), r ∈ [1; 4], (A.2)

the tent map

t′ = ft(t) =

{
2t 0 ≤ t < 0.5
2− 2t 0.5 ≤ t < 1,

(A.3)

and the shift map

s′ = fs(s) =

{
2s 0 ≤ s < 0.5
2s− 1 0.5 ≤ s < 1.

(A.4)
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The two versions of the logistic map are related through the transforma-
tions

a =
r

4
(r − 2) and x = hx(z) =

4z − 2
r − 2

or

r = 1 +
√

1 + 4a and z = h−1
x (x) =

−1 +
√

1 + 4a

4
x +

1
2
,

respectively.
The similarity to the tent map holds only for r=4 or a=2 respectively.

The transformation is (Ulam and von Neumann 1947):

z = hz(t) = sin2(
π

2
t).

Finally, the tent map is related to the shift map through the operation

s = t xor
t

2
,

where “xor” means the exclusive or of the binary representations of the
operands, i.e. , when

s =
∞∑

j=1

sj2−j , sj ∈ {0, 1} and (A.5)

t =
∞∑

j=1

tj2−j , tj ∈ {0, 1} then (A.6)

sj =


t1 if j = 1
0 if j > 1 and tj + tj−1 is even
1 if j > 1 and tj + tj−1 is odd.

(A.7)

Since this transformation is somehow pathological, it should not be taken too
seriously. However, it shows that the properties of the shift map described
in Section 3.3 have some relevance in the context of the logistic map.
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