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SUMMARY

This paper is about guaranteed parameter estimation in two contexts, namely bounded-error and optimal
estimation. In bounded-error estimation, one looks for the set of all parameter vectors that are consistent
with some prior bounds on the errors deemed acceptable between the model behavior and that of the
system. In optimal estimation, one looks for the set of all parameter vectors that minimize some cost
function quantifying the discrepancy between the behaviors of the system and its model. In both cases,
guaranteed means that proven statements are made about the set of interest. The situation is made much
more difficult when the model output is assumed to depend nonlinearly in the parameters to be estimated
and when dealing with continuous-time models, as here. Important tools based on interval analysis (IA)
that contribute to allowing guaranteed estimation in these challenging conditions are presented. Some are
absolutely classical in the context of IA but not so well known in the community of parameter estimation
at large. Others have been developed recently and were mainly presented in conferences. Some, such as
the use of sensitivity functions to reduce more quickly the size of outer approximations of the sets of
interest, are new. Challenges for future research in the context of guaranteed nonlinear estimation are
mentioned. Copyright � 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Parameter estimation is classically conducted by minimizing some cost function that may be purely
heuristic or deduced from information (or hypotheses) about the noise corrupting the data and
possibly about the prior distribution for the parameter vector.

Bounded-error parameter estimation, by contrast, does not use a cost function and aims instead
at characterizing the set of all values of the parameter vector that are consistent with bounds on
the errors one is prepared to accept between the behavior of the model and that of the system to
be modeled. It can be traced back to the seminal work of F.C. Schweppe [1, 2] on state estimation
for linear models. His idea was recursive to compute ellipsoids guaranteed to contain the actual
state of the system provided that some bounds on the state perturbations and measurement noise
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were satisfied. This type of parameter or state bounding based on a description of uncertainty by
sets is often referred to as guaranteed estimation, see, e.g. [3] and the books [4, 5]. We shall see
in this paper that guaranteed can be given a broader meaning in our context. Of course, other
types of containers than ellipsoids could and have been used, such as boxes [6], parallelotopes [7],
zonotopes [8] or other limited-complexity polytopes. Matlab toolboxes implementing ellipsoidal
or polytopic calculus are readily available [9, 10].

Parameter or state bounding when the model output depends nonlinearly on the quantities to
be estimated is of course much more difficult, and nonlinear ellipsoidal calculus remains a largely
open subject. A generalization of the ellipsoidal approach to nonlinear state estimation is briefly
considered in [4]. It is based on the use of auxiliary (time-varying) linear state equations on which
ellipsoidal calculus can be applied. Outer (or inner) approximations of the set of feasible state
vectors at any given instant of time can then be computed under the form of ellipsoids using the
same methodology as for linear models, provided suitable inclusion relations between the nonlinear
and auxiliary models can be established. Along a similar line, one may also try to consider a
nonlinear model as a linear one with uncertain regressors, where the uncertainty is described by
intervals, and use techniques such as described in [11]. In both cases, the nonlinear problem is
transformed into a linear uncertain one to which linear techniques can be applied. Linear models
with time-varying coefficients could also be considered, as in [12].

Instead of attempting linearization, one may use the tools provided by interval analysis (IA)
directly to compute an approximate but guaranteed characterization of sets in the nonlinear case.
In the context of bounded-error parameter estimation, this approach made it possible to derive
algorithms that could be used to bracket the set of possible values for the parameter vector between
computable unions of boxes in parameter space [13]. At the beginning, these algorithms were
limited to models for which a closed-form expression of the model output as a function of the
parameters was available, but the concept of guaranteed integration [14–16] made it applicable
to models for which no such expression exists [17–19]. This paper will not describe guaranteed
integration in any detail, but it may be useful to mention that two approaches at least could be
considered. The use of high-order Taylor models is considered in [14–16], while W. Kühn uses a
set-valued dynamical system approach based on the description of sets by zonotopes, where again
IA plays an important role [20].

The success of IA as a tool to compute guaranteed set estimates in the context of bounded-error
estimation seems to have somewhat obscured the fact that the very same tools can also be used
to obtain guaranteed estimates in the more traditional approach where a cost function is to be
optimized.

Besides presenting our most recent results on the use of IA and guaranteed integration for
bounded-error nonlinear parameter estimation in the context of continuous-time models, we would
therefore like to show how these tools can also contribute to the more mainstream parameter
estimation through optimization. We shall also explain why this is actually more difficult, and
point out challenges for future research.

2. NOTATION AND PROBLEM STATEMENT

We assume that the model consists of a set of ordinary differential equations in state-space form,
involving some vector p of parameters to be estimated

x′(t) = f(x(t),p, t),

ym(p, t) = h(x(t),p).
(1)

x′(t) is the derivative of x with respect to time and the dependency of f in t may result from the
influence of a known, time-varying vector u of external inputs. For the sake of simplicity, the initial
state x(t0) is assumed here to be known, but it could also be parametrized. With such a model,
ym(p, t), as computed from (1), is almost always nonlinear in the parameters p, even when it is
linear in some input.
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GUARANTEED PARAMETER ESTIMATION 193

Let y(ti ) be the vector of the measurements collected on the system at the instants of time ti ,
i =1, . . . ,nt, and let y be the vector obtained by concatenating all y(ti )s

y= (yT(t1), . . . ,yT(tnt ))
T. (2)

Two types of estimation problems will be considered, namely those based on the minimization
of some cost function and those involving the characterization of a set of parameter vectors that
satisfy error bounds. We shall now state these problems more precisely and explain what we mean
by guaranteed in both cases.

2.1. Guaranteed estimation via optimization

The most classical statistical estimation methods involve the optimization of a cost function c(p),
which may be deduced from probabilistic assumptions on the noise and parameters, see, e.g.
[21, 22]. For example, if one assumes that there exists a true value p∗ of the parameter vector and
that the measurements satisfy

y=ym(p∗)+e, (3)

with ym(p) consisting of subvectors ym(p, ti ) and e a zero-mean white Gaussian measurement
noise, then the maximum-likelihood estimate of p is the argument of the minimum of the cost
function

c(p)= (y−ym(p))T(y−ym(p)). (4)

When ym(p) is linear in p, it is easy, at least in principle, to check whether the experimental
conditions are such that the global minimizer of (4) is unique, and to compute it when this is the
case. When ym(p) is nonlinear in p, as is most often the case with models such as (1), optimization
becomes much more difficult. The usual local methods (such as quasi-Newton or conjugate gradient
algorithms) converge at best to a local minimizer of the cost function. Global optimization based
on random search (for instance simulated annealing or genetic algorithms) cannot be guaranteed
to locate global minimizers in finite time, so that, most often, no guarantee at all is provided about
the estimate. Often, we do not even know how many global minimizers there are.

In this context, guaranteed estimation aims at deriving proven statements about the global
minimum of the cost function and the associated set of global minimizers (which is also the set
of optimal estimates).

2.2. Guaranteed estimation via parameter bounding

An alternative parameter estimation approach is parameter bounding, see [23–26] and the refer-
ences therein. In parameter bounding, one looks for the set of all parameter vectors that are
consistent with the experimental data, the structure of the model, and the bounds on the errors one
is prepared to accept. With each experimental data vector y(ti ), we assume that we can associate
some known vector of intervals (or box) [ei ,ei ] of acceptable errors. The parameter vector p,
assumed to belong to some known prior box [p]0, is deemed acceptable if

ei�y(ti )−ym(ti ,p)�ei for all i =1, . . . ,nt. (5)

Parameter estimation then amounts to characterizing the set

S = {p∈ [p]0|p is acceptable}
= {p∈ [p]0|ym(p)∈ [y]}, (6)

with

[y]=

⎛⎜⎜⎜⎝
[y(t1)−e1,y(t1)−e1]

...

[y(tnt )−ent,y(tnt )−ent
]

⎞⎟⎟⎟⎠ (7)
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and

ym(p)= (yT
m(t1,p), . . . ,yT

m(tnt,p))T. (8)

In this context, guaranteed estimation aims at deriving proven statements about S, such as S is
void or S is included in some computed set S̄. When ym(p) is linear in p, a number of methods
have been proposed to compute sets guaranteed to contain S, which is then a convex polytope.
When the model is nonlinear in p, as assumed here, S may consist of disconnected and nonconvex
subsets, which makes the situation much more difficult to handle.

2.3. Aims of the paper

This paper is aimed at presenting important tools based on IA and guaranteed integration that
contribute to allowing guaranteed estimation in these challenging conditions. Some are absolutely
classical in the community of interval analysts but not so well known in the control and statistics
communities. Others have been developed recently and were mainly presented in conferences.
Some, such as the use of sensitivity functions to reduce more quickly the size of outer approxima-
tions of the sets of interest, are new. A seemingly simple but nevertheless challenging example of
nonlinear parameter estimation problem will be treated with the optimal and bounding approaches,
and will be used to demonstrate the interest of the new approach for set reduction based on the
use of sensitivity functions.

3. TOOLS FOR GUARANTEED ESTIMATION

In this section, we briefly recall the three main tools to be used to make estimation guaranteed in
either of the senses defined above. IA, which is at the core of the other two, is presented first. We
then proceed to guaranteed global optimization and guaranteed set characterization.

Specific tools, such as guaranteed integration and sensitivity functions, which are useful to
consider the estimation of systems described by continuous-time state-space models, will be intro-
duced in Section 4.

3.1. Interval analysis

IA [27–29] provides tools to compute with vectors of intervals (more concisely, boxes) [x]=
[x,x]⊂Rn . For any function f :D⊂Rn −→Rm defined by combining arithmetical operators and
elementary functions, IA makes it possible to build inclusion functions [f] satisfying

∀[x]⊂D, f([x])⊂ [f]([x]), (9)

where [f]([x]) is a box.
Natural inclusion functions, for example, are obtained by replacing all real variables, operators

and elementary functions by their interval counterparts. It thus becomes possible to enclose the
set f([x]), which most often cannot be computed, in a computable box [f]([x]).

If f is differentiable over [x], the mean-value theorem implies that

∀x∈ [x],∃z∈ [x] such that f(x)= f(m)+J(z) ·(x−m),

where J is the Jacobian matrix of f and m=mid([x]) is the center of x. Thus,

∀x∈ [x], f(x)∈ f(m)+[J]([x]) ·(x−m),

where [J] is an inclusion function for J. So

f([x])⊂ f(m)+[J]([x]) ·([x]−m).

Therefore, the interval function

[fc]([x])= f(m)+[J]([x]) ·([x]−m) (10)
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GUARANTEED PARAMETER ESTIMATION 195

is another inclusion function for f, called its centered inclusion function. This function becomes
especially interesting when the width of [x] is small, because the overestimation resulting from
the interval evaluation of [J]([x]) is reduced by the product with [x]−m, which is a small box
centered on zero. The centered inclusion function can be significantly improved at the cost of a
slightly more complicated formulation [30].

3.2. Guaranteed global optimization

Let P⊂Rdimp be a (possibly very large but compact) domain of interest in parameter space. For
simplicity, here P will be a box [p]0. We wish to characterize the set S of all the global minimizers
of the cost function that are inside P

S=argmin
p∈P

c(p). (11)

These minimizers are not expected to lie on the boundary of P, so this is an unconstrained
minimization. We now present the principles of a simplified version of Hansen’s algorithm, see
[29, 31] for more details.

Let L be a list of boxes, the union of which contains all global minimizers belonging to P.
Initially, L contains only [p]0. The basic structure of the algorithm is as follows, where ε>0 is a
tolerance parameter to be tuned by the user.

1. While L contains at least one box with width greater than ε, do {
(a) Pop a box [p] with width greater than ε out of L,
(b) Update the upper bound ub(ĉ) of the value of the global minimum ĉ over [p]0.
(c) Try to eliminate [p] via the midpoint and monotonicity tests.
(d) Should this fail, try to eliminate or at least reduce [p] using a contractor.
(e) If [p] resists elimination and the width of [p] is greater than ε, then bisect [p] and push

the two resulting boxes into L. Otherwise push [p] back as is into L.}
2. At last eliminate all boxes of L that no longer pass the midpoint test.

A good strategy for selecting the box to be considered at Step 1 is to take one of the boxes
with the largest potential, i.e. a box [p] such that the lower bound of [c]([p]) is minimal, with [c]
an inclusion function for the cost function c. To update ub(ĉ) as required by Step 1(b), it suffices
to compute the value of the cost at the center of [p], which is of course an upper bound of the
optimal value of the cost, and to compare it with the best upper bound available so far.

Two methods for eliminating the box [p] under consideration are tried at Step 1(c). The midpoint
test is based on the evaluation of [c]([p]). If the lower bound of [c]([p]) is greater than ub(ĉ), then
no p in [p] can be a global minimizer of c over P, so the entire box [p] can be eliminated. The
monotonicity test takes advantage of the fact that if c is once differentiable then any unconstrained
minimizer corresponds to a stationary point at which the gradient g of c takes the value zero. Thus
if an inclusion function [g] is available for g and if [p] is such that

0 /∈ [g]([p]), (12)

then no p in [p] can be an unconstrained minimizer so [p] can be eliminated.
If a contractor is available, see Section 3.4, Step 1(d) uses it to reduce the size of [p] without

bisecting it, which makes Step 1(d) an essential ingredient in the struggle against the curse of
dimensionality. A number of potentially useful contractors are presented in [29].

Since the tolerance parameter ε is strictly positive, the algorithm stops after a finite number of
steps and the set S of all global minimizers of c in P is included in the union of the boxes in L,
each of which has now a width smaller than ε.
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3.3. Set inversion via IA

Let f be a possibly nonlinear function from Rnp to Rny and Y be a subpaving of Rny , i.e. a union
of nonoverlapping boxes. Set inversion is the characterization of the reciprocal image of Y

S={p∈Rnp | f(p)∈Y}= f−1(Y). (13)

Using an inclusion function [f] for f, two subpavings S and S such that

S⊂S⊂S

can be obtained with the algorithm SIVIA, for Set Inverter Via IA [13].
A (possibly very large) search box [p]0 to which S is guaranteed to belong must be provided by

the user. It will be used as an initial outer approximation to build inner and outer approximations
of S under the form of subpavings by successive bisections and selections. Consider a box [p]
obtained by bisection of some box belonging to the current outer subpaving. Several cases may
be encountered.

1. First, one may use some contractor C on [p] to make [p] smaller by eliminating parts of it
that do not satisfy f(p)∈Y, see Section 3.4.

2. If [p] has become empty after contraction, or if [f]([p]) has an empty intersection with Y,
then [p] has an empty intersection with S and should be discarded.

3. If [f]([p]) is included in Y, then [p] is included in S, and should be stored in S and in S.
4. If [f]([p]) has a nonempty intersection with Y, but is not entirely in Y, then [p] may contain a

part of S without being included in S and is said to be undetermined. If it has a width greater
than a prespecified precision parameter ε, then this undetermined box should be bisected into
the boxes L[p] and R[p], each of which should be investigated by the algorithm.

The resulting recursive algorithm is given in Table I, where the subpavings S and S should be
initialized as empty before the first call.

All the boxes of S that are not in S form an uncertainty layer �S. All of them have a width
smaller than ε, so the accuracy of the description of S may be increased by decreasing ε, at the
cost of more computations.

3.4. Contractors

Assume that the parameters to be estimated must satisfy the vector inequality constraint k(p)�0,
to be understood componentwise. Assume moreover that p is known to belong to [p]. A contractor
Ck for p is then an algorithm to compute a box Ck([p]) such that

Ck([p]) ⊂ [p],

{p∈ [p]|k(p)�0} ⊂ Ck([p]).
(14)

The first relation in (14) ensures that p is contracted, while the second guarantees that no value
of p satisfying the constraints is lost. Contractors can be similarly defined in the case of equality
constraints.

Table I. SIVIA.

Algorithm SIVIA(in: f,Y, [p],ε; inout: S,S)

1 [p] :=C([p]);
2 if [p]=∅ or [f]([p])∩Y=∅ return;
3 if [f]([p])⊂Y then
3 {S :=S∪[p];S :=S∪[p]; return;};
4 if w([p])<ε then {S :=S∪[p]; return;};
5 SIVIA(f,Y, L[p],ε,S,S);
6 SIVIA(f,Y, R[p],ε,S,S).
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Consider first guaranteed global optimization. If an upper bound c̃ for the global minimum ĉ of
c(p) over [p]0 is available, then any global minimizer p̂∈ [p] has to satisfy

c(̂p)�c̃. (15)

When a closed-form expression of the cost function is available, this constraint may be used to
build a contractor for p via interval constraint propagation, see [29]. When this is not the case, as
usual when considering state-space models such as those described by (1), one may use a centered
inclusion function of the cost function over [p]= [p1]×·· ·×[pnp ] to get from (15)

c(m)+
np∑

i=1
([pi ]−mi )

[
�c

�pi

]
([p])⊂ [0, c̃], (16)

since the cost function is positive. Thus, each [pi ], i =1, . . . ,np, has to satisfy

[pi ]⊂
(

[0, c̃]−c(m)−∑
j �=i

([p j ]−m j )

[
�c

�p j

]
([p])

)/[
�c

�pi

]
([p])+mi , (17)

leading to a contracted box [p]new =Cc([p]), the components of which are defined as

[pi ]
new = [pi ]∩

((
[0, c̃]−c(m)−∑

j �=i
([p j ]−m j )

[
�c

�p j

]
([p])

)/[
�c

�pi

]
([p])+mi

)
(18)

for i =1, . . . ,np. The main advantage of this contractor is that it only requires the computation of
an inclusion function for the gradient of the cost function, which is easily obtained using sensitivity
functions, see Section 4.2.

A division by [�c/�pi ]([p]) is performed in (18). If standard interval arithmetic is used, a
division by an interval containing zero leads to the whole real line, so if 0∈ [�c/�pi ]([p]), no
contraction takes place along the component of [p] being considered. This situation occurs as soon
as [p] contains an argument of a minimum of the cost function, but also when [p] is large, which
may lead to a large overestimation of the range of �c/�pi over [p]. Applying extended interval
arithmetic [32] when 0∈ [�c/�pi ]([p]) would allow one to get up to two intervals of the form
]−∞,a] and [b,+∞[ when performing the division by [�c/�pi ]([p]). After intersection with [pi ],
the i th component of Cc([p]) would then be empty or consist of one or two subintervals.

Consider now bounded-error parameter estimation. All values of the parameter vector p∈S

satisfy

ym(p)∈ [y]= [y,y],

which leads to

ym(p)−y � 0

−ym(p)+y � 0
. (19)

Using (19), and provided that a closed-form expression for ym(p) is available, one may use interval
constraint propagation to get a contracted domain for [p]. When such an expression is not available,
one may again resort to a centered inclusion function, now for the model output. For the kth
component ym

k (p) of ym(p), for all p∈S⊂ [p] and m∈ [p], (19) translates into

ym
k (m)+

np∑
j=1

([p j ]−m j )

[
�ym

k

�p j

]
([p])− y

k
� 0,

−ym
k (m)−

np∑
j=1

([p j ]−m j )

[
�ym

k

�p j

]
([p])+ yk � 0,
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for k =1, . . . ,dimym(p). The kth output measurement thus leads to a contracted domain [p]new =
Ck([p]), the components of which are defined as

[pi ]
new = [pi ]∩

((
[y

k
, yk]− ym

k (m)−∑
j �=i

([p j ]−m j )

[
�ym

k

�p j

]
([p])

)/[
�ym

k

�pi

]
([p])+mi

)
, (20)

for i =1, . . . ,np. A similar procedure may be applied for all components of ym(p). Again, only
an inclusion function for the Jacobian matrix of ym(p) is needed to apply the contractor Ck . For
state-space models such as those described by (1), this inclusion function may be obtained using
sensitivity functions, see Section 4.2.

With standard interval arithmetic, contraction may only be obtained in (20) when 0 /∈
[�ym

k /�pi ]([p]). The conditions leading to 0∈ [�ym
k /�pi ]([p]) depend mainly on the structure of

the model and the overestimation introduced by the inclusion function for �ym
k /�pi . They are not

necessarily linked to whether [p] is in the solution set S. Extended intervals could readily be
used to improve the efficiency of (20). With the SIVIA algorithm, boxes tend to accumulate on the
boundary of S [13]. For boxes that are very small and across the boundary of S, no significant
contraction may be obtained. However, for the first iterations of SIVIA, very large boxes may be
efficiently eliminated or their size may be strongly reduced using Ck .

Many other contractors may be considered. For example the Newton contractor, which can be
seen as an interval counterpart to the Newton algorithm, can be used to reduce the search domain
in global optimization. Assuming that the cost function is sufficiently differentiable, it exploits
the constraint g(p)=0, which must be satisfied by any p to qualify as an unconstrained global
minimizer. This, however, requires an inclusion function for the Hessian of the cost function, which
significantly complicates implementation and execution. Other interesting contractors include the
Krawczyk contractor and contractors based on constraint propagation. For more details, see [29].

4. DEALING WITH CONTINUOUS-TIME MODELS

Apart from the evaluation of an inclusion function of the cost function c, the simplified version of
Hansen’s algorithm presented in Section 3.2 requires the evaluation of an inclusion function of its
gradient g. When a closed-form expression of the model output is available, a formal expression
of the gradient is easily obtained by formal differentiation and the standard methods for obtaining
inclusion functions apply. In general, however, it is not possible to obtain closed-form solutions
for models such as those described by (1), which makes the obtention of inclusion functions for
c and g particularly difficult.

To get an inclusion function for c, the naive approach would be to use one of the guaranteed ODE
solvers provided by IA, e.g. AWA [33], COSY [34] or VNODE [16]. Unfortunately, these solvers
prove unable to provide accurate enclosures for the solutions when there are uncertain parameters,
as here. The main idea to bypass this difficulty is to bound the solutions of uncertain dynamical
systems using deterministic dynamical systems. Efficient guaranteed numerical integrators can then
be used to compute the corresponding bounding solutions. Preliminary results were presented in
[35, 36] in the context of cooperative dynamical models, i.e. models such as (1) for which the
off-diagonal terms of the Jacobian matrix of f are positive. These results were inspired by the
interval observer proposed in [37]. Müller’s theorems [38], which have been recently used in the
context of guaranteed simulation [39], make it possible to bound the solutions of more general
dynamical models.

4.1. Müller’s theorem

In order to apply one of the theorems in [38] to the bounding of the solutions of uncertain
dynamical models such as (1) in the presence of uncertain parameters p∈ [p

0
,p0] and uncertain

initial conditions x(t0)∈ [x0,x0], we reformulate it as follows.
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Theorem 1
Assume that f(x,p, t) in (1) is continuous on

T :

⎧⎪⎪⎨⎪⎪⎩
x(t)�x�X(t)

p
0
�p�p0

t0�t�t1

where �i (t) and �i (t), i =1 . . .nx, are continuous on [t0, t1] and such that

1. x(t0)=x(t0) and X(t0)=x(t0),
2. the left derivatives D−�i (t) and D−�i (t) and right derivatives D+�i (t) and D+�i (t) of

�i (t) and �i (t) satisfy, for i =1 . . .nx and t ∈ [t0, t1],

D±�i (t)�min
Ti (t)

fi (x,p, t) and D±�i (t)�max
Ti (t)

fi (x,p, t),

where Ti (t) is the subsets of T defined by

Ti (�) :

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

xi =�i (�),

� j (�)�x j�� j (�), j �= i,

p
0
�p�p0,

t =�,

and Ti (t) is the subset of T defined by

Ti (�) :

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

xi =�i (�)

� j (�)�x j�� j (�), j �= i,

p
0
�p�p0,

t =�.

Then, for any given x(t0)∈ [x0,x0] and p∈ [p
0
,p0], a solution to (1) exists such that

x(t)�x(t)�X(t) ∀t ∈ [t0, t1],

and this solution is equal to x(t0) at t = t0.
Moreover, if for any p∈ [p

0
,p0] and t ∈ [t0, t1], f(x,p, t) is Lipschitz with respect to x, then for

any given x(t0)∈ [x0,x0] and p∈ [p
0
,p0] this solution is unique.

This theorem allows the evaluation of lower and upper bounds for the solution of (1) provided
that two functions x(t) and X(t) are available. The interval function [U](t)= [x(t),X(t)] can then
be seen as an inclusion function for all solutions x(t) of the state equation in (1).

The construction of x(t) and X(t) is usually easy on a case-by-case basis, as illustrated in
Section 5.1.

An inclusion function for g may similarly be obtained by using the sensitivity functions of the
output with respect to the parameters, see Section 4.2.

4.2. Sensitivity functions

Denote the first-order sensitivity of x j with respect to pk by sjk

sjk(p, t)= �x j

�pk
(p, t). (21)

Assume, for the sake of simplicity, that the model output is linear in the state and given by

h(x(t),p)=Mx(t), (22)
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where M is a known matrix. The Jacobian matrix of h(x(t),p) is then given by

Jh(p, t)=M
�x(p, t)

�p
, (23)

with

�x(p, t)

�p
= (sjk(p, t)), j =1, . . . ,dimx, k =1, . . . ,dimp. (24)

When considering all measurements between t1 and tnt , as in (8), one gets

dym(p)

dp
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
M

�x(p, t1)

�p

...

M
�x(p, tnt )

�p

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (25)

The gradient of c may then be obtained as

dc

dp
(p)=−2(y−ym(p))T dym(p)

dp
,

where dym(p)/dp may be evaluated using first-order sensitivity functions.
To compute sjk, differentiate the j th row of (1) with respect to pk to get

s′
jk = � f j (x,p)

�x j
sjk + � f j (x,p)

�pk
. (26)

Since x(t0) is assumed to be known, the initial conditions are

sjk(t0)= �x(t0)

�pk
=0.

The sensitivity function may then be obtained by considering the extended state-space model
consisting of the dynamical part of (1), and of all differential equations (26) satisfied by the
sensitivity functions. Müller’s theorem will then turn out to be especially useful, as the extended
state-space model is seldom cooperative, even if this is the case of the initial state-space model,
see Section 5.

5. EXAMPLES

Consider the seemingly simple compartmental model [40] described by Figure 1. Although it is
linear from an input–output point of view, its output is highly nonlinear in its parameters. Its state
equation is readily obtained from conservation law as

x′ = f(x,p,u), (27)

Figure 1. Two-compartment model.
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where p= (k21,k12,k01)T and

f(x,p,u)=
(−(p1 + p3)x1 + p2x2 +u

p1x1 − p2x2

)
. (28)

The quantity of material in Compartment 2 is assumed to be observed, so

ym(ti ,p)= x2(ti ,p), i =1, . . . ,nt.

Assume that there is no input (u ≡0) and that the initial condition is known to be x0 = (1,0)T.
Differentiating (28) with respect to each of the parameters in turn, one gets the differential

equations

s′
11 = −(p1 + p3)s11 + p2s21 −x1,

s′
21 = p1s11 − p2s21 +x1,

s′
12 = −(p1 + p3)s12 + p2s22 +x2,

s′
22 = p1s12 − p2s22 −x2,

s′
13 = −(p1 + p3)s13 + p2s23 −x1,

s′
23 = p1s13 − p2s23.

(29)

Since x0 does not depend on p, the initial conditions for all of these sensitivity equations are zero.
Note that the 8th-order extended state equation to be solved for computing x and the sjks is not
cooperative, which makes the Müller theorem recalled in Section 4.1 particularly useful.

Since all pks and x j s are positive, it is easy, using Müller’s theorem, to build bounding dynamical
systems to evaluate guaranteed enclosures of the model output ym(p), of the cost c and of its
gradient g with respect to p. One may, for instance, compute guaranteed enclosures of x, s11 and
s21 via the simulation of the two 6th-order deterministic ODEs

x ′
1 = −(p1 + p3)x1 + p

2
x2,

x ′
2 = p

1
x1 − p2x2,

x ′
1 = −(p

1
+ p

3
)x1 + p2x2,

x ′
2 = p1x1 − p

2
x2,

s′
11 = −(p1 + p3)s11 + p

2
s21 −x1,

s′
21 = p

1
s11 − p2s21 +x1

(30)

and

x ′
1 = −(p1 + p3)x1 + p

2
x2,

x ′
2 = p

1
x1 − p2x2,

x ′
1 = −(p

1
+ p

3
)x1 + p2x2,

x ′
2 = p1x1 − p

2
x2,

s′
11 = −(p

1
+ p

3
)s11 + p2s21 −x1,

s′
21 = p1s11 − p

2
s21 +x1.

(31)

The same procedure can be applied for the sensitivities with respect to p2 and p3, and one could, at
least in principle, build a single 16th-order deterministic ODE, the solution of which would provide
all required bounding functions. This is not to be recommended, however, as the complexity of
guaranteed ODE solvers depends heavily on the state dimension, so one is better of dealing with
six 6th-order deterministic ODEs.
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Figure 2. Projection onto the (p1, p2) plane (left) and (p2, p3) plane (right) of a guaranteed outer
approximation of the set of all global minimizers (ε=0.001).

To generate artificial data, a two-compartment model with a ‘true’ value of the parameter vector
p∗ = (0.6,0.15,0.35)T has been simulated. The data were then obtained by rounding the value of
x2(ti ) to the nearest two-digit number for ti = i�t , with �t =1s and i =1, . . . ,15. The initial search
domain is [p]0 = [0.01,1]×3.

5.1. Global optimization

The cost function is written as

c(p)=
nt∑

i=1
(x2(p, ti )− y(ti ))

2,

where x2(p, ti ) is computed by guaranteed numerical integration of (27). For a precision param-
eter ε=0.001, the deterministic global optimization algorithm described in Section 3.2 with the
contractor Cc presented in Section 3.4 provides a list of boxes whose projections onto the (p1, p2)
plane and (p2, p3) plane are shown in Figure 2. Only boxes for which it was not possible to prove
that they do not contain any global minimizer are represented, so this is an outer approximation.
This result has been obtained in 3 h on a Pentium IV at 2 GHz. The symmetry of the projection onto
the (p2, p3)-plane of the solution boxes suggests an identifiability problem that could be confirmed
by a theoretical study [22]: the values of the parameters p2 and p3 may be exchanged without
modifying the model output. This identifiability study was not used to get the results presented
here.

5.2. Bounded-error estimation

The SIVIA algorithm described in Section 3.3 is now employed. To be tolerated, the error must
belong to [e]= [−0.005,0.005] for all measurements. Three versions have been considered. In NIF,
the natural inclusion function is used; CF uses the centered form, and CF-CP uses the contractors
Ck on [p] presented in Section 3.4, with m= (p+p)/2 for all measurements.

Using the same data as in the optimization case, we obtain the results summarized in Tables II
and III. The guaranteed numerical integration toolbox VNODE [16] has been used to obtain guar-
anteed solutions to (30), (31), and to similar systems of ODEs used for evaluating the sensitivities
with respect to p2 and p3.

For a given value of ε, NIF is the most efficient in terms of computational complexity, see
Table II, since only cooperativity is used, and no sensitivity function is involved. The price to
be paid is, by far, the worst performance in terms of accuracy, measured by the volume of the
outer approximation to the solution set, see Table III. When considering a centered form, since
the accuracy of the inclusion function is much better, much less undetermined boxes have to be
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Table II. Computing times in seconds for three versions of the SIVIA algorithm.

ε 0.01 0.005 0.001 0.0005

NIF 21 48 294 823
CF 650 1265 7720 28328
CF-CP 180 336 5818 27876

Table III. Volumes (×103) of guaranteed outer approximations of the solution set for
three versions of the SIVIA algorithm.

ε 0.01 0.005 0.001 0.0005

NIF 1.03 0.31 0.032 0.014
CF 0.23 0.057 0.093 0.0051
CF-CP 0.049 0.016 0.0050 0.0040
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Figure 3. Volume of the solution set as a function of computing time (in seconds).

considered. The volume of the solution set is then much smaller for a given ε. Nevertheless, the
centered form is much more costly to obtain, since additional ODEs have to be solved to get
the sensitivity functions. Using the contractor in conjunction with the centered inclusion function
allows one to reduce computing time significantly, at least for large values of ε. The volume of
the solution set is also significantly reduced, when compared with the other two approaches. For
larger values of ε, CF-CP behaves similarly to CF in terms of computing time, but the quality
of the solution is still better for CF-CP. The advantage brought by the contractors reduces when
ε decreases, since many small boxes accumulate at the boundary of the solution set. The boxes
within the solution set and those at the boundary cannot be reduced by contraction. This explains
why the number of simulations become similar.

Figure 3 plots the volume of the guaranteed outer approximation of the solution set as a function
of computing time. CF turns out to be the worst solution, always bettered by NIF or CF-CP.

Figures 4 and 5 show planar projections of the guaranteed outer approximations Sε to the
solution set S obtained by the three versions of the SIVIA algorithm for four values of the precision
parameter. Presentation is in the same order as in Tables II and III. With NIF, the precision
parameter ε has to be very small (less than 0.001) to make it possible to see that the actual solution
set S consists of two subsets, suggesting an identifiability problem. This conclusion is already
reached with ε=0.005 for CF and with ε=0.01 for CF-CP.
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Figure 4. Projection on the (p1, p2)-plane of outer-approximations of the solution set obtained for
various values of the precision parameter ε (from left to right, ε=0.01, ε=0.005, ε=0.001, and
ε=0.0005), and for three versions of SIVIA (from top to bottom, natural inclusion function (NIF),
centered form (CF), and centered form with constraint propagation (CF-CP)); note the scale of

the subfigures of the two right-most columns.

The results of Tables II and III suggest combining CF-CP and NIF within a single search
algorithm. For each box [p], CF-CP should only be used when the contractor Ck applied on [p]
may produce a contraction significant enough to compensate for the additional computing time
required to obtain the sensitivity functions needed by Ck . If obtaining a NIF takes �% of the
time required to obtain a CF-CP, one may stop using CF-CP as soon as the ratio of the volume
of the contracted box to that of the initial box is larger than �%. Many other strategies may be
considered.

6. CONCLUSIONS AND PERSPECTIVES

Interval analysis (IA) is an attractive option for anyone who feels disturbed by the fact that the
usual techniques for nonlinear parameter estimation are unable to deliver any guarantee about the
estimates that they produce. In this paper, we have presented some already available tools that
allow global and guaranteed results to be obtained in nontrivial cases involving continuous-time
state-space models. Guaranteed simulation, in combination with Müller’s theorems, allow one to
deal with ODEs for which no closed-form solution is available, in a more general setting than the
notion of cooperativity previously used.

It should be clear, however, that guaranteed estimation is far from being applicable to all
nonlinear estimation problems of interest, In the general case, the characterization of the set of
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Figure 5. Projection on the (p2, p3)-plane of outer-approximations of the solution set obtained for
various values of the precision parameter ε (from left to right, ε=0.01, ε=0.005, ε=0.001, and
ε=0.0005), and for three versions of SIVIA (from top to bottom, natural inclusion function (NIF),
centered form (CF), and centered form with constraint propagation (CF-CP)); note the scale of

the subfigures of the two right-most columns.

all optimal or acceptable parameter vectors is an NP-complete problem, and the struggle against
the curse of dimensionality is absolutely crucial. The use of contractors, which reduces the size
of boxes of interest without bisecting them or losing any solution, is an important ally in this
endeavor. We have shown how sensitivity functions, combined with guaranteed integration and
one of Müller’s theorems, can be used to build such contractors.

Guaranteed parameter optimization turns out to be more difficult than guaranteed parameter
bounding. The presence of a sum of terms depending on the uncertain parameters in the cost
function entails overestimation in the evaluation of the associated inclusion function. This is because
all interval quantities are treated as independent, even if they actually correspond to the same box
in parameter space. More efficient contractors than those employed here could be considered to
address this difficulty. A first option, which we plan to investigate, is to build contractors for each
term in the sum, taking into account the fact that each of them must comply with the constraint
(15). Convexity tests based on second-order sensitivity functions could also be considered.

Moreover, significant improvement in computing times can be expected by an appropriate
management of the switching between NIF and CP-CF, which may differ from box to box and
from time to time.
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