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1 Interval analysis

Provides efficient techniques to
e perform guaranteed deterministic global optimization,
e evaluate all solutions of a set of nonlinear equations

e compute inner and outer approximation of the set of vectors consistent with a

set of inequalities




Has lead to numerous applications
e Bounded-error parameter and state estimation of nonlinear systems
e Robust bounded-error parameter and state estimation

e Parameter estimation by global optimization

Structural identifiability study

Distributed estimation




1.1 Interval arithmetic primer

Introduced by Sunaga in Japan and by Moore in the USA.

Limited impact until beginning of the 90s

—> various reasons, among which implementation issues
Many books, code libraries, lists

http://www.cs.utep.edu/interval-comp/main.html




1.1.1 Interval of real numbers

Closed and bounded subset of R

z] =z, ={r e Rlz < x <T}.

It is a set = notions such as

are well defined.

When considering U

[min(g, ), max(T, @)] .




Other characteristics of an interval

Width

Midpoint




1.1.2 Basic operations

May be extended to intervals

o€ {+, =X, /1, [zlolyl ={zoylr € lz] et y € [y]}.

More specifically

2
_x_




1.1.3 Inclusion function

Range of a function over an interval

flz]) ={f (@) |z € [z]}

— difficult to obtain in general

— sometimes even not an interval

Inclusion function [f](.) of f(.) satisfies

Viz] CR, f(lz]) C [f]([z]).

Inclusion function is minimal if C may be replaced by =.

Convergent inclusion function

if w ([z]) — 0, then w ([f] ([z])) — O.




Inclusion function easy to build for monotone functions

{\/E,\/ﬂ, si z >0,

lexp (z) , exp (T)] ,
tan (z) ,tan (T)], if [x] C [—-7/2,7/2].

More complicated for other elementary functions
—> algorithm required for sin, cos, ...

— natural inclusion function




Usually, an inclusion function is not minimal

]

— some overestimation of the range (pessimism).

Natural inclusion function

4

Remplace each real variable by its interval counterpart




1.1.4 Example

f1] ([

f2] (=]
f3] (=
fa] (|

Only [f4] (.) is minimal <= minimum number of occurences of the interval
variable







1.1.5 Centred form

For f: D — R, differentiable over [x] C D, one has Vz,m € |z], 3¢ € [z] such
that

f(@)=f(m)+(x—m)f(&).
Then
f(x) € f(m)+(x—m)f (z]),

and

f(z]) € F(m) + ([z] =m) [f'] ([]) -

Centred form is the inclusion function defined by




Interpretation of the centred form




1.1.6 Example

Consider

f(z) = 2% exp(z) — zexp (z?) .

Compar the natural inclusion fonction and the centred form

[z] f (=) /1 (l=]) f]e (l])

0.5, 1.5] [—4.148, 0] (—13.82, 9.44] [—25.07, 25.07]
0.9, 1.1] [—0.05380, 0] [—1.697,1.612] [—0.5050, 0.5050]
0.99,1.01] | [—0.0004192,0] | [—0.1636,0.1628] | [—0.004656, 0.004656]




1.1.7 Extension to vectors of intervals

Vector of intervals or box

X




2 Parameter estimation

System

Model
M(p)

y : vector of experimental data
p : vector of unknown, constant parameters

ym (P) : vector of model output

Parameter estimation :

Determination of p from y.




2.1 Problem formulation

1. Minimisation of a cost function, e.g.,

p = arg min j P) =y —¥m®) ¥ —¥ym®P)

e Local techniques : Gauss-Newton, Levenberg-Marquardt. . .
e Random search : simulated annealing, genetic algorithms. ..

e Global guaranteed techniques : Hansen’s algorithm




2.2 Parameter bounding

Experimental data : y (¢;),
ti,2=1..., N, known measurement times

el = |g;,8i], i =1,..., N, known acceptable errors

p € Py deemed acceptable if for all 2 =1,..., ]V,
g; <Y (ti) —ym (P, i) <&

—> Bounded-error parameter estimation :

Characterize S = {p € Py | y (t;) — ym (P, t;) € [g;,8], i =1,...




e When y,, (p,t;) is linear in p

— exact description by polytopes
(Walter and Piet-Lahanier, 1989...)

— outer approximation by ellipsoids, polytopes, ...
(Schweppe, 1973 ; Fogel ang Huang, 1982...)

e When y, (p,t;) is non-linear in p

— outer approximation by polytopes, ellipsoids. ..
(Norton, 1987 ; Clément and Gentil, 1988 ; Cerone, 1991...)

— approximate but guaranteed enclosure of S by Sivia
(Moore, 1992 ; Jaulin and Walter 1993)




2.3 Robust parameter bounding

Interval analysis [?, ?], |7] allows to get

ScScS

No consistent p is missed = guaranteed set estimate.




Hypothesis on model or noise violated




Estimator robust against n outliers

St = g (S

1<l <<l KN ALy ,... 0AE N

Intersection of N — n sets among N

te(p) = (y;" (P) — Ye € |g4,E0])

S;, evaluated with a complexity similar to that of S




2.4 Sivia

Set to be characterized

S={pcPo|yti)—ym(pP:ti) €[g;,&),1 =
={P<€Po|ym(p) CV},

Y= [y(t1) —El,y(tl) —§1] X e
N
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Yellow box is undetermined
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Parameter space Data space

Red box proven to be outside S




Parameter space Data space

Green box proven to be included in S




2.5 Sivia with contractors

Reduce the size of undetermined boxes without any bisection
AP2

',‘.XO

Contractor

S
7

P,

Parameter space Parameter space

Contractors (Jaulin et al, 2001) based on

e interval constraint propagation
e linear programming
e parallel linearization




Example of interval constraint propagation

Ym (P) = p1exp (—p2) ,

P1 € [p1]0 = [—272]7 P2 € [pz]o — [—272]-

One want to characterise the set

S={pelp)’ x[pal° | ym(p) C[1.2]}.




One may write that
p1exp (—pz2) € [1,2],
thus
1,2]
exp ([—2,2])

) = [~2,2] N[0.1353, 14.78]

p1 € [—2,2]m<

e [0.1353,2].

Similarly for po, one has

p2 € [—2,2]N (—ln ([0.%523],20) = [-2,2] N [-2.6932,0.6932]

e [~2,0.6932]




2.6 Example

Estimation of the parameters of a compartmental model

!

State equation

) = — (ko1 + k21) 1 + k1222
/

To = ko121 — k1222

Observation equation




Model
Ym (P, ti) = p1 (exp (pati) —exp (psti)), i =1,...

where the macroparameters

T
P = (p17p27p3)

depends on the microparameters

(kOla k127 k21) .

Simulated

noisy experimental data

. . l
8 10 12 14 16




Macroparameter estimation with

e, =—0.09, 5 =0.09, i =1,...,16

Results

STVIA SiviA + ICP ICP only
Comp. time (s) 8 6.2 0.63
[0.49, 1.06] [0.49, 1.06] [0.52,0.98]
Bounding box [—0.293, —0.141] | [—0.293, —0.141] | [—0.282,—0.156]
[—5, —1.054] [—5, —1.054] [—5, —1.167]




2.7 Limitations

To test [p|, SIVIA evaluates [yw| (|P],. %), i =1,...
e explicit expression of y, (p,t;) required

e if available, can be complicated, e.g., here
k21

Ym (pvt) — X
' V (ko1 — k12 + ka1) + 4k12k21

t
(eXP <— ((k()l + k1o + ko1) + v/ (ko1 — k12 + k21) + 4k12k21) 5)

t
— exp (— ((km + k12 + k21) — v/ (ko1 — k12 + k21) + 4k12k21)> 5)

— multiple occurences

— non-minimal inclusion functions




2.8 Alternative approach

Guaranteed numerical integration of state equation

State equation
,  dx

- E :f(X,p*,W,U),

X

where
w : state perturbation assumed bounded,

u : known input.

Observation equation

where

VvV : measurement noise assumed bounded.




Example of model output

ym (P, t:) =h(x(p,t;)), i=1,...,N.

Sivia requires tight enclosure of y, (|p],t;)
= integration of dynamical system with large [p]
— important wrapping effect

— pessimism introduced

For general models, guaranteed numerical integration not adapted.

But can be used for cooperative systems.




2.9 Parameter estimation for cooperative systems

Tight enclosures of y., ([p], ;) easily obtained for cooperative systems.

Definition 1 (Smith, 94) The dynamical system

x' =f(x,t),

where f (x,t) is continuous and differentiable is cooperative on a domain D if

dfi
(%:j

>0, foranyi# 7, t >0 and x € D.




Theorem 1 (Smith, 94) Consider the system

dx
/
f J Y J °
X ” (x,p, W, u)

If there exists a pair of cooperative systems
(x,t)

(x,t)

f
f

satisfying

e £(x) < £ (x,p,w, 1)

foranype[g,ﬁ],w t>0and x €D,
o x, < x(0) < Xo,

then
X (t), for anyt >0,

with
@ (Xg,t) the flow corresponding to {x' = f (x,t) ,x (0) = x4}

¢ (Xo,t) the flow corresponding to {f’ = f(x,t),%x(0) = io} :







Steps to build an inclusion function for y., ([p],%;)

1. Find a pair of cooperative systems satisfying

f(xt) <f(x,p,w,u) <f(xt),

forall p € |p,p|, we[w(t),w(t)],t>0and x €D.

2. Integrate

with guaranteed ODE solvers to get
¢ (%0, ti)]

[(b (iOv tz)]

3. The box-valued function

is an inclusion function for x (;)




and the box-valued function

] ({lo]] ([x], %))

is thus an inclusion function for y., (|p],t;).




2.10 Example

Unknown parameter vector p*

Compartmental model
of the behaviour of a drug

(Glafenine) administered orally.

’

1= —(k1+ ko)z1 + u
vh = kixi — (ks + ks) o

g = kgiUl -+ ]CgCIZQ — k4£€3

\

Y (P.t) = (22 (P,t), 23 (Pt))"

— (ky, ko, ks, ka, ks) ", with p*> 0.



Can be bounded between

/

\

—> two cooperative systems

Guaranteed numerical integration provides

inclusion function for y,, (p,t), here minimal.




Simulation conditions

p* = (0.6, 0.8, 1, 0.2, 0.4)"
Imput w (t) = 6 (¢)

Outputs of Compartments 2 and 3 have
been measured at t; = 0.5¢,
1 =1,...,20.

Introduction of bounded relative

random noise

v — yi (14 €;)

with ¢; random in [—0.01, 0.01].

Compartment 2 (+)
Compartment 3 (o)




Solution

Precision parameter : € = 0.01

Computing time : 15 mn on an Athlon 1800

Bounding box :

S C [0.586,0.625] x [0.74, 0.85]
x [0.81,1.25] x [0.185,0.215] x [0.235, 0.56]

contains p*.




| | | | | | | | |
0.58 0.585 0.59 0.595 0.6 0.605 0.61 0.615 0.62 0.625
X axis

Figure 1: Projection onto the (k1, ko) —plane




Figure 2: projection onte the (k3, k4) —plane




| | | | | | |
0.185 0.19 0.195 0.2 0.205 0.21 0.215
X axis

Figure 3: Projection onto the (k4, ks)—plane




2.11 How contractors may be used again?

All values of the parameter vector p € S satisfy

ym (P) € [y] = |y,¥].

which leads to
Ym (p) - X = 0
—Ym (P) + ? 2 0

(1)

Centered form, for the model output: For the kth component y7* (p) of ym (P),
for all p € S C [p] and m € [p], (1) translates into

g (m) + 5272, ([ps] = my) |
—y (m) = 3257 ([ps] -

for k=1,...,dimyy (p).




new

Contracted domain [p]” " = Cf (|p]), with components

i = [pa] N ( ([ykyk} —yi (m) = > ([p;] — my)

JF#i
fori=1,...,np.

Requires sensitivity function of the model output.




2.11.1 Sensitivity functions

First-order sensitivity of x; with respect to pi by

sik (P, t) = A (p,t).

For model output is linear in state and given by
h(x(t),p) = Mx(?),

where M is a known matrix. Jacobian matrix of h (x (¢),p) then given by

0x (p,t)
op

Jh (pat) =M

,dimx, k=1,...,dimp.




To compute s, differentiate the jth row of
dx
— =1 (x,
to get

A 8fj (Xap) . af] (Xap)
Sjk = 837]’ Sjk + apk

When x (tg) is assumed to be known, the initial conditions are

o 8x (t())

Sjk (to) = = 0.

Opi

Sensitivity function obtained by considering extended state-space model

consisting of
e the dynamical part of (7),

e all differential equations (8) satisfied by the sensitivity functions.




2.11.2 Example

0=—0)
) k12

TFo

Figure 4: Two-compartment model

State equation obtained from conservation law as
x =f(x,p,u),

where P = (kgl, klg, kol)T and

— (p1 +p3)z1 + p2z2 +u
f(x,p,u) =
plzy — paxo




Quantity of material in Compartment 2 observed, so

Ym (twp) — T2 (tzap) ’ 1= 17 ceny Tt

Assume that there is no input (u = 0) and that the initial condition is known to
T
be X0 — (1, O) .




Differentiating

— (p1 + p3) x1 + P22 + u
f(x,p,u) =
plzy — paxo

with respect to each of the parameters in turn, one gets

(

s11 = — (p1 +p3) S11 + D2s21 — 21,
S5 = P1511 — P2S21 + 1,
Sh9 = — (p1 + p3) s12 + D2s22 + T2,
S5y = P1S12 — P2S22 — T2,

3’13 — (Pl +P3) $13 + P2S23 — X1,

/
So3 = P1513 — P2523.

\

When x( independent on p, initial conditions for sensitivity equations are zero.

Coupled system is not cooperative.

Miiller’s theorem may be helpful.




2.11.3 Reader’s Digest Version of Miiller’s Theorem

Consider the (uncertain) model

x=1f(x(t),p:t), x(0) € [x9,X0],

with f (x, p,t) continuous on




Assume that
1. w(0) =%, and ©(0)

2.

D*w; (t)

ming (¢) fi (X, Pst)

Y

w; () <
D:I:Qi (t) 2 maXTi(t) f’L (X7 pat) ’

with T, (¢) the subset of T defined as

and T, (t) as T, (t) but with w; (t) replaced by Q; ().




Then, for any x (0) € [x,Xo], P € [Eo,ﬁo], and t € [0,7T], a solution exists, such
that
w(t) <x(t) <Q(t).

If f (x,p,t) is Lipschitz with respect to x, this solution is the unique one.

(w (t), Q2 (t)] is an inclusion function for all x (p,t).

Building w (t) and €2 (¢) is usually easy on a case-by-case basis.




2.11.4 Application of Miiller’s theorem

Obtaining x, s11, and s9; via the simulation of the two 6th-order deterministic
ODEs

y

—(Py +DPs)zy T P,To,
P,L1 — P2y,

_(2_91 +Z_?3)fl +]_92§27

—/ = = J—
Ly = P11 — PyT2,

s11 = —(P1 +DP3)s11 + P,821 — T,

/ L _
891 = P,S11 — P2S21 T2




—(P1 +D3)z;1 + P,
P,T1 — DaZa,
—(p, +p,)T1 + DT,

_/ = = J—

§11 = —(p, +Py)811 + PoS21 — Z4,

_/ —_ — J— _
So1 = P1S11 — ]_)2821 + 2.




2.11.5 Example - continued

Artificial data generation:

e "true” value of the parameter vector p* = (0.6,0.15, O.SS)T simulated,

e data obtained by rounding x5 (t;) to nearest two-digit number for t; = iAt,
with At=1sand?=1,...,15,
e initial search domain is [p], = [0.01, 1] 3
Three versions of SIVIA algorithm
e NIF', the natural inclusion function is used;

e CF uses the centered form,

e CF-CP uses the contractor.




Volume x1000

|
10°
Computing time

Volume of the solution set as a function of computing time (in seconds)




0.5 0.5
0.4 : 0.4
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Projection on the (p1, p2)-plane of outer-approximations of the solution set obtained for various
values of the precision parameter € (from left to right, e = 0.01, e = 0.005, ¢ = 0.001, and
e = 0.0005), and for NIF, CF, and CF-CP.




0.4
0.3

\ Iy | o2
~ ] 0.1

0 : : 0 : 0
0 0.5 1 0 0.5 1 0 . 0.5

Projection on the (p2, p3)-plane of outer-approximations of the solution set obtained for various

values of the precision parameter € (from left to right, e = 0.01, ¢ = 0.005, € = 0.001, and
e = 0.0005), and for NIF, CF, and CF-CP.




Conclusions

e Interval techniques provide guaranteed enclosure of the solution

e ICP or Sivia 4+ ICP allows more unknown parameters than SIviA

but require an explicit solution for the model

e Alternative approach needs only state equation
but still time-consuming
< Guaranteed integration of ODE

< Contractors usable provided that sensitivity fiunctions are employed




