Interval analysis for guaranteed Parameter Estimation

Michel Kieffer

joint work with L. Jaulin and E. Walter

Linköping – June 19, 2011

1 Interval analysis

Provides efficient techniques to

- perform guaranteed deterministic global optimization,
- evaluate all solutions of a set of nonlinear equations
- compute inner and outer approximation of the set of vectors consistent with a set of inequalities

• ...

Has lead to numerous applications

- Bounded-error parameter and state estimation of nonlinear systems
- Robust bounded-error parameter and state estimation
- Parameter estimation by global optimization
- Structural identifiability study
- Distributed estimation
- ...

1.1 Interval arithmetic primer

Introduced by Sunaga in Japan and by Moore in the USA.

Limited impact until beginning of the 90s

 \implies various reasons, among which implementation issues

Many books, code libraries, lists

http://www.cs.utep.edu/interval-comp/main.html

1.1.1 Interval of real numbers

Closed and bounded subset of $\mathbb R$

$$[x] = [\underline{x}, \overline{x}] = \{x \in \mathbb{R} | \underline{x} \le x \le \overline{x}\}.$$

It is a set \implies notions such as

 $=,\in,\subset,\cap$

are well defined.

When considering \cup

 $[x] \cup [y] = \left[\min(\underline{x}, \underline{y}), \max(\overline{x}, \overline{y})\right].$

Other characteristics of an interval

Width

$$w\left([x]\right) = \overline{x} - \underline{x},$$

Midpoint

$$m\left([x]\right) = \frac{\underline{x} + \overline{x}}{2}.$$

1.1.2 Basic operations

May be extended to intervals

$$\circ \in \{+, -, \times, /\}, \ [x] \circ [y] = \{x \circ y | x \in [x] \ \text{et} \ y \in [y]\}$$

More specifically

$$\begin{cases} [x] + [y] = \left[\underline{x} + \underline{y}, \overline{x} + \overline{y}\right], \\ [x] - [y] = \left[\underline{x} - \overline{y}, \overline{x} - \underline{y}\right], \\ [x] \times [y] = \left[\min\left(\underline{x}.\underline{y}, \overline{x}.\underline{y}, \underline{x}.\overline{y}, \overline{x}.\overline{y}\right), \max\left(\underline{x}.\underline{y}, \overline{x}.\underline{y}, \underline{x}.\overline{y}, \overline{x}.\overline{y}\right)\right], \\ [x] / [y] = [x] \times \left[1/\overline{y}, 1/\underline{y}\right], \text{ si } 0 \notin [y] \text{ et ind fini sinon.} \end{cases}$$

1.1.3 Inclusion function

Range of a function over an interval

 $f([x]) = \{f(x) | x \in [x]\}$

 \implies difficult to obtain in general

 \implies sometimes even not an interval

Inclusion function [f](.) of f(.) satisfies

 $\forall [x] \subset \mathbb{R}, \ f([x]) \subset [f]([x]).$

Inclusion function is minimal if \subset may be replaced by =.

Convergent inclusion function

if $w([x]) \to 0$, then $w([f]([x])) \to 0$.

Inclusion function easy to build for monotone functions

$$\begin{split} \sqrt{[x]} &= \left[\sqrt{\underline{x}}, \sqrt{\overline{x}}\right], \text{ si } \underline{x} \ge 0, \\ \exp\left([x]\right) &= \left[\exp\left(\underline{x}\right), \exp\left(\overline{x}\right)\right], \\ \tan\left([x]\right) &= \left[\tan\left(\underline{x}\right), \tan\left(\overline{x}\right)\right], \text{ if } \left[x\right] \subseteq \left[-\pi/2, \pi/2\right]. \end{split}$$

More complicated for other elementary functions

- \implies algorithm required for \sin, \cos, \dots
- \implies natural inclusion function

 \implies some overestimation of the range (*pessimism*).

Natural inclusion function

$\begin{array}{c} \Downarrow\\ \text{Remplace each real variable by its interval counterpart}\\ x\longrightarrow [x] \end{array}$

1.1.4 Example

$$f_1(x) = x(x+1), \quad f_3(x) = x^2 + x,$$

$$f_2(x) = x \times x + x, \quad f_4(x) = (x + \frac{1}{2})^2 - \frac{1}{4}$$

Results for $[x] = [-1, 1]$

$$[f_1]([x]) = [x]([x]+1) = [-2,2], [f_2]([x]) = [x] \times [x] + [x] = [-2,2], [f_3]([x]) = [x]^2 + [x] = [-1,2], [f_4]([x]) = ([x] + \frac{1}{2})^2 - \frac{1}{4} = [-\frac{1}{4},2]$$

•

Only $[f_4](.)$ is minimal \iff minimum number of occurrences of the interval variable

1.1.5 Centred form

For $f : \mathcal{D} \longrightarrow \mathbb{R}$, differentiable over $[x] \subset \mathcal{D}$, one has $\forall x, m \in [x], \exists \xi \in [x]$ such that

$$f(x) = f(m) + (x - m) f'(\xi).$$

Then

$$f(x) \in f(m) + (x - m) f'([x]),$$

and

$$f([x]) \subseteq f(m) + ([x] - m)[f']([x]).$$

Centred form is the inclusion function defined by

 $[f]_{c}([x]) = f(m) + ([x] - m)[f']([x])$

Interpretation of the centred form

1.1.6 Example

Consider

$$f(x) = x^{2} \exp(x) - x \exp(x^{2}).$$

Compar the natural inclusion fonction and the centred form

[x]	$f\left(\left[x ight] ight)$	$\left[f\right]\left(\left[x\right]\right)$	$\left[f\right]_{\rm c}\left([x]\right)$
[0.5, 1.5]	[-4.148, 0]	[-13.82, 9.44]	[-25.07, 25.07]
[0.9, 1.1]	[-0.05380, 0]	[-1.697, 1.612]	$\left[-0.5050, 0.5050 ight]$
[0.99, 1.01]	[-0.0004192, 0]	$\left[-0.1636, 0.1628 ight]$	$\left[-0.004656, 0.004656 ight]$

1.1.7 Extension to vectors of intervals

Vector of intervals or box

$$[\mathbf{x}] = [x_1] \times \cdots \times [x_n].$$

Vector inclusion function

2 Parameter estimation

- \mathbf{y} : vector of experimental data
- \mathbf{p} : vector of unknown, constant parameters
- $\mathbf{y}_{m}\left(\mathbf{p}\right)$: vector of model output

Parameter estimation :

Determination of $\hat{\mathbf{p}}$ from \mathbf{y} .

2.1 Problem formulation

1. Minimisation of a cost function, e.g.,

$$\widehat{\mathbf{p}} = \arg\min_{\mathbf{p}} j(\mathbf{p}) = (\mathbf{y} - \mathbf{y}_{m}(\mathbf{p}))^{\mathrm{T}} (\mathbf{y} - \mathbf{y}_{m}(\mathbf{p}))$$

- Local techniques : Gauss-Newton, Levenberg-Marquardt...
- Random search : simulated annealing, genetic algorithms...
- Global guaranteed techniques : Hansen's algorithm

2.2 Parameter bounding

Experimental data : $y(t_i)$,

 $t_i, i = 1..., N$, known measurement times $[\varepsilon_i] = [\underline{\varepsilon}_i, \overline{\varepsilon}_i], i = 1, ..., N$, known acceptable errors

 $\mathbf{p} \in \mathcal{P}_0$ deemed acceptable if for all $i = 1, \ldots, N$,

 $\underline{\varepsilon}_{i} \leqslant y(t_{i}) - y_{\mathrm{m}}(\mathbf{p}, t_{i}) \leqslant \overline{\varepsilon}_{i}.$

 \implies Bounded-error parameter estimation :

Characterize $\mathbb{S} = \{ \mathbf{p} \in \mathcal{P}_0 \mid y(t_i) - y_m(\mathbf{p}, t_i) \in [\underline{\varepsilon}_i, \overline{\varepsilon}_i], i = 1, \dots, N \}$

- When $y_{\rm m}\left({\bf p},t_i\right)$ is linear in ${\bf p}$
 - exact description by polytopes(Walter and Piet-Lahanier, 1989...)
 - outer approximation by ellipsoids, polytopes, ...
 (Schweppe, 1973; Fogel ang Huang, 1982...)
- When $y_{\rm m}\left({\bf p},t_i\right)$ is non-linear in ${\bf p}$
 - outer approximation by polytopes, ellipsoids...
 (Norton, 1987; Clément and Gentil, 1988; Cerone, 1991...)
 - approximate but guaranteed enclosure of S by SIVIA (Moore, 1992; Jaulin and Walter 1993)

2.3 Robust parameter bounding

$$\mathbb{S} = \bigcap_{\ell=1...N} \mathbb{S}_{\ell},$$

avec

$$\mathbb{S}_{\ell} = \{ \mathbf{p} \in \mathcal{P}_0 \mid y_{\ell}^{\mathrm{m}}(\mathbf{p}) - y_{\ell} \in [\underline{\varepsilon}_{\ell}, \overline{\varepsilon}_{\ell}] \}$$

Interval analysis [?, ?], [?] allows to get

 $\underline{\mathbb{S}}\subset\mathbb{S}\subset\overline{\mathbb{S}}$

No consistent \mathbf{p} is missed \implies guaranteed set estimate.

When the solution set is empty

$$\mathbb{S} = \bigcap_{\ell=1...N} \mathbb{S}_{\ell} = \emptyset.$$

Hypothesis on model or noise violated

Estimator robust against n outliers

$$\mathbb{S}_n^{\mathbf{r}} = \bigcup_{1 \leqslant \ell_1 < \dots < \ell_n \leqslant N} \bigcap_{\ell \neq \ell_1, \dots, \ell \neq \ell_N} \mathbb{S}_{\ell}.$$

Intersection of N - n sets among N

Interval analysis \implies non-combinatorial solution

$$\mathbb{S}_{n}^{\mathrm{r}} = \left\{ \mathbf{p} \in \mathcal{P}_{0} \mid \sum_{\ell=1}^{N} t_{\ell} \left(\mathbf{p} \right) \geq N - n \right\}$$

with

$$t_{\ell}(\mathbf{p}) = (y_{\ell}^{\mathrm{m}}(\mathbf{p}) - y_{\ell} \in [\underline{\varepsilon}_{\ell}, \overline{\varepsilon}_{\ell}])$$

 $\mathbb{S}_n^{\mathrm{r}}$ evaluated with a complexity similar to that of \mathbb{S}

2.4 Sivia

Set to be characterized

$$S = \{ \mathbf{p} \in \mathcal{P}_0 \mid y(t_i) - y_m(\mathbf{p}, t_i) \in [\underline{\varepsilon}_i, \overline{\varepsilon}_i], i = 1, \dots, N \}$$
$$= \{ \mathbf{p} \in \mathcal{P}_0 \mid \mathbf{y}_m(\mathbf{p}) \subset \mathcal{Y} \},\$$

with

Yellow box is undetermined

Red box proven to be outside ${\mathcal S}$

Green box proven to be included in \mathcal{S}

2.5 Sivia with contractors

Reduce the size of undetermined boxes without any bisection

Contractors (Jaulin et al, 2001) based on

- interval constraint propagation
- linear programming
- parallel linearization
- ...

Example of interval constraint propagation

$$y_{\rm m} (\mathbf{p}) = p_1 \exp(-p_2),$$

 $p_1 \in [p_1]^0 = [-2, 2], \ p_2 \in [p_2]^0 = [-2, 2].$

One want to characterise the set

$$\mathcal{S} = \left\{ \mathbf{p} \in \left[p_1 \right]^0 \times \left[p_2 \right]^0 \mid \mathbf{y}_{\mathbf{m}} \left(\mathbf{p} \right) \subset \left[1, 2 \right] \right\}.$$

One may write that

 $p_1 \exp(-p_2) \in [1, 2],$

thus

$$p_1 \in [-2,2] \cap \left(\frac{[1,2]}{\exp([-2,2])}\right) = [-2,2] \cap [0.1353, 14.78]$$

$$\in [0.1353, 2].$$

Similarly for p_2 , one has

$$p_2 \in [-2,2] \cap \left(-\ln\left(\frac{[1,2]}{[0.1353,2]}\right) \right) = [-2,2] \cap [-2.6932, 0.6932]$$

$$\in [-2, 0.6932]$$

2.6 Example

Estimation of the parameters of a compartmental model

State equation

$$\begin{cases} x_1' = -(k_{01} + k_{21})x_1 + k_{12}x_2 \\ x_2' = k_{21}x_1 - k_{12}x_2 \end{cases} \quad \text{with} \begin{cases} x_1(0) = 0 \\ x_2(0) = 0 \end{cases}$$

Observation equation

$$y(t_i) = x_2(t_i) + b(t_i), \ i = 1, \dots, 16$$

Model

$$y_{\rm m}(\mathbf{p},t_i) = p_1\left(\exp\left(p_2 t_i\right) - \exp\left(p_3 t_i\right)\right), \ i = 1,\ldots,16,$$

where the macroparameters

$$\mathbf{p} = \left(p_1, p_2, p_3\right)^{\mathrm{T}}$$

depends on the microparameters

 (k_{01}, k_{12}, k_{21}) .

Macroparameter estimation with

$$\underline{\varepsilon}_i = -0.09, \ \overline{\varepsilon}_i = 0.09, \ i = 1, \dots, 16$$

Results

	SIVIA	SIVIA + ICP	ICP only
Comp. time (s)	8	6.2	0.63
	[0.49, 1.06]	[0.49, 1.06]	[0.52, 0.98]
Bounding box	[-0.293, -0.141]	[-0.293, -0.141]	[-0.282, -0.156]
	[-5, -1.054]	[-5, -1.054]	[-5, -1.167]

2.7 Limitations

To test $[\mathbf{p}]$, SIVIA evaluates $[y_m]([\mathbf{p}], t_i), i = 1, \dots, 16$:

- explicit expression of $y_{\rm m}(\mathbf{p},t_i)$ required
- if available, can be complicated, e.g., here

$$y_{\rm m}\left(\mathbf{p}, t_i\right) = \frac{k_{21}}{\sqrt{(k_{01} - k_{12} + k_{21}) + 4k_{12}k_{21}}} \times \left(\exp\left(-\left((k_{01} + k_{12} + k_{21}) + \sqrt{(k_{01} - k_{12} + k_{21}) + 4k_{12}k_{21}}\right)\frac{t_i}{2}\right) - \exp\left(-\left((k_{01} + k_{12} + k_{21}) - \sqrt{(k_{01} - k_{12} + k_{21}) + 4k_{12}k_{21}}\right)\right)\frac{t_i}{2}\right)$$

- $\hookrightarrow \text{ multiple occurrences}$
- \hookrightarrow non-minimal inclusion functions

2.8 Alternative approach

Guaranteed numerical integration of state equation

State equation

$$\mathbf{x}' = \frac{d\mathbf{x}}{dt} = \mathbf{f}\left(\mathbf{x}, \mathbf{p}^*, \mathbf{w}, \mathbf{u}\right),$$

where

 \mathbf{w} : state perturbation assumed bounded,

u : known input.

Observation equation

$$\mathbf{y}(t_i) = \mathbf{h}(\mathbf{x}(\mathbf{p}^*, t_i)) + \mathbf{v}(t_i), \ i = 1, \dots, N,$$

where

 \mathbf{v} : measurement noise assumed bounded.

Example of model output

$$\mathbf{y}_{\mathrm{m}}(\mathbf{p}, t_{i}) = \mathbf{h}(\mathbf{x}(\mathbf{p}, t_{i})), \ i = 1, \dots, N.$$

Sivia requires tight enclosure of $\mathbf{y}_{m}([\mathbf{p}], t_{i})$

- \Rightarrow integration of dynamical system with large $[\mathbf{p}]$
- \hookrightarrow important wrapping effect
- \hookrightarrow pessimism introduced

For general models, guaranteed numerical integration not adapted. But can be used for cooperative systems.

2.9 Parameter estimation for cooperative systems

Tight enclosures of $\mathbf{y}_{m}([\mathbf{p}], t_{i})$ easily obtained for cooperative systems.

Definition 1 (Smith, 94) The dynamical system

 $\mathbf{x}' = \mathbf{f}\left(\mathbf{x}, t\right),$

where $\mathbf{f}(\mathbf{x},t)$ is continuous and differentiable is cooperative on a domain \mathcal{D} if

$$\frac{\partial f_i}{\partial x_j} \ge 0, \text{ for any } i \neq j, t \ge 0 \text{ and } \mathbf{x} \in \mathcal{D}$$

Theorem 1 (Smith, 94) Consider the system

$$\mathbf{x}' = rac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}, \mathbf{p}, \mathbf{w}, \mathbf{u}).$$

If there exists a pair of cooperative systems

$$\begin{cases} \mathbf{x}' = \underline{\mathbf{f}} \left(\mathbf{x}, t \right) \\ \mathbf{x}' = \overline{\mathbf{f}} \left(\mathbf{x}, t \right) \end{cases}$$

satisfying

then

$$\underline{\mathbf{x}}(t) \leq \mathbf{x}(t) \leq \overline{\mathbf{x}}(t), \text{ for any } t \geq 0,$$

with

•
$$\underline{\mathbf{x}}(t) = \underline{\phi}(\underline{\mathbf{x}}_0, t)$$
 the flow corresponding to $\{\underline{\mathbf{x}}' = \underline{\mathbf{f}}(\underline{\mathbf{x}}, t), \underline{\mathbf{x}}(0) = \underline{\mathbf{x}}_0\}$

•
$$\overline{\mathbf{x}}(t) = \overline{\phi}(\overline{\mathbf{x}}_0, t)$$
 the flow corresponding to $\left\{\overline{\mathbf{x}}' = \overline{\mathbf{f}}(\overline{\mathbf{x}}, t), \overline{\mathbf{x}}(0) = \overline{\mathbf{x}}_0\right\}$.

Steps to build an inclusion function for $\mathbf{y}_{m}([\mathbf{p}], t_{i})$

1. Find a pair of cooperative systems satisfying

 $\underline{\mathbf{f}}\left(\mathbf{x},t\right)\leqslant\mathbf{f}\left(\mathbf{x},\mathbf{p},\mathbf{w},\mathbf{u}\right)\leqslant\overline{\mathbf{f}}\left(\mathbf{x},t\right),$

for all $\mathbf{p} \in [\underline{\mathbf{p}}, \overline{\mathbf{p}}]$, $\mathbf{w} \in [\underline{\mathbf{w}}(t), \overline{\mathbf{w}}(t)]$, $t \ge 0$ and $\mathbf{x} \in \mathcal{D}$.

2. Integrate

$$\begin{cases} \underline{\mathbf{x}}' = \underline{\mathbf{f}} (\underline{\mathbf{x}}, t) \\ \overline{\mathbf{x}}' = \overline{\mathbf{f}} (\overline{\mathbf{x}}, t) \end{cases} \quad \text{with} \begin{cases} \underline{\mathbf{x}} (0) = \underline{\mathbf{x}}_0 \\ \overline{\mathbf{x}} (0) = \overline{\mathbf{x}}_0 \end{cases}$$

with guaranteed ODE solvers to get

$$\begin{cases} \left[\underline{\phi} \left(\underline{\mathbf{x}}_{0}, t_{i} \right) \right] = \begin{bmatrix} \underline{\phi} \left(\underline{\mathbf{x}}_{0}, t_{i} \right), \overline{\phi} \left(\underline{\mathbf{x}}_{0}, t_{i} \right) \\ \overline{\phi} \left(\overline{\mathbf{x}}_{0}, t_{i} \right) \end{bmatrix} = \begin{bmatrix} \underline{\phi} \left(\underline{\mathbf{x}}_{0}, t_{i} \right), \overline{\phi} \left(\underline{\mathbf{x}}_{0}, t_{i} \right) \\ \overline{\phi} \left(\overline{\mathbf{x}}_{0}, t_{i} \right) \end{bmatrix} , \quad i = 1, \dots, N \end{cases}$$

3. The box-valued function

$$\left[\left[\phi\right]\right]\left(\left[\mathbf{x}\right],t_{i}\right) = \left[\underline{\phi}\left(\underline{\mathbf{x}},t\right),\overline{\overline{\phi}\left(\overline{\mathbf{x}},t_{i}\right)}\right]$$

is an inclusion function for $\mathbf{x}(t_i)$

and the box-valued function

 $[\mathbf{h}]\left(\left[\left[\phi\right]\right]\left(\left[\mathbf{x}\right],t_{i}\right)\right)$

is thus an inclusion function for $\mathbf{y}_{m}([\mathbf{p}], t_{i})$.

2.10 Example

Compartmental model of the behaviour of a drug (Glafenine) administered orally.

$$\begin{cases} x_1' = -(k_1 + k_2)x_1 + u \\ x_2' = k_1x_1 - (k_3 + k_5)x_2 \\ x_3' = k_2x_1 + k_3x_2 - k_4x_3 \end{cases}$$

$$\mathbf{y}_{m}(\mathbf{p},t) = (x_{2}(\mathbf{p},t), x_{3}(\mathbf{p},t))^{T}$$

Unknown parameter vector $\mathbf{p}^* = (k_1, k_2, k_3, k_4, k_5)^{\mathrm{T}}$, with $\mathbf{p}^* > \mathbf{0}$.

Can be bounded between

$$\begin{cases} \underline{x}_1' = -(\overline{k}_1 + \overline{k}_2)\underline{x}_1 + u \\ \underline{x}_2' = \underline{k}_1\underline{x}_1 - (\overline{k}_3 + \overline{k}_5)\underline{x}_2 \\ \underline{x}_3' = \underline{k}_2\underline{x}_1 + \underline{k}_3\underline{x}_2 - \overline{k}_4\underline{x}_3 \end{cases} \text{ and } \begin{cases} \overline{x}_1' = -(\underline{k}_1 + \underline{k}_2)\overline{x}_1 + u \\ \overline{x}_2' = \overline{k}_1\overline{x}_1 - (\underline{k}_3 + \underline{k}_5)\overline{x}_2 \\ \overline{x}_3' = \overline{k}_2\overline{x}_1 + \overline{k}_3\overline{x}_2 - \underline{k}_4\overline{x}_3 \end{cases}$$

 \implies two cooperative systems

Guaranteed numerical integration provides inclusion function for $\mathbf{y}_{m}(\mathbf{p},t)$, here minimal.

Simulation conditions

$$\mathbf{p}^* = (0.6, 0.8, 1, 0.2, 0.4)^{\mathrm{T}}$$

Imput $u(t) = \delta(t)$
Outputs of Compartments 2 and 3 have
been measured at $t_i = 0.5i$,
 $i = 1, \dots, 20$.

Introduction of bounded relative random noise

$$\widetilde{y}_i \to y_i \left(1 + \epsilon_i\right)$$

with ϵ_i random in [-0.01, 0.01].

Solution

```
Precision parameter : \epsilon = 0.01
```

Computing time : 15 mn on an Athlon 1800

Bounding box :

 $\mathcal{S} \subset [0.586, 0.625] \times [0.74, 0.85]$ $\times [0.81, 1.25] \times [0.185, 0.215] \times [0.235, 0.56]$

contains \mathbf{p}^* .

Figure 1: Projection onto the (k_1, k_2) -plane

Figure 2: projection onto the (k_3, k_4) -plane

Figure 3: Projection onto the (k_4, k_5) -plane

2.11 How contractors may be used again?

All values of the parameter vector $\mathbf{p} \in \mathbb{S}$ satisfy

$$\mathbf{y}_{\mathrm{m}}\left(\mathbf{p}
ight)\in\left[\mathbf{y}
ight]=\left[\mathbf{\underline{y}},\mathbf{\overline{y}}
ight],$$

which leads to

$$\begin{aligned} \mathbf{y}_{m}\left(\mathbf{p}\right) &- \mathbf{y} \geqslant \mathbf{0} \\ -\mathbf{y}_{m}\left(\mathbf{p}\right) &+ \mathbf{\overline{y}} \geqslant \mathbf{0} \end{aligned}$$
 (1)

Centered form, for the model output: For the kth component $y_k^{\mathrm{m}}(\mathbf{p})$ of $\mathbf{y}_{\mathrm{m}}(\mathbf{p})$, for all $\mathbf{p} \in \mathbb{S} \subset [\mathbf{p}]$ and $\mathbf{m} \in [\mathbf{p}]$, (1) translates into

$$\begin{pmatrix} y_k^{\mathrm{m}}(\mathbf{m}) + \sum_{j=1}^{n_{\mathrm{p}}} \left([p_j] - m_j \right) \left[\frac{\partial y_k^{\mathrm{m}}}{\partial p_j} \right] \left([\mathbf{p}] \right) - \underline{y}_k \ge 0, \\ -y_k^{\mathrm{m}}(\mathbf{m}) - \sum_{j=1}^{n_{\mathrm{p}}} \left([p_j] - m_j \right) \left[\frac{\partial y_k^{\mathrm{m}}}{\partial p_j} \right] \left([\mathbf{p}] \right) + \overline{y}_k \ge 0,$$

for $k = 1, \ldots, \dim \mathbf{y}_{\mathrm{m}}(\mathbf{p})$.

Contracted domain $[\mathbf{p}]^{\text{new}} = C_k([\mathbf{p}])$, with components

$$[p_i]^{\text{new}} = [p_i] \cap \left(\left(\left[\underline{y}_k, \overline{y}_k \right] - y_k^{\text{m}} \left(\mathbf{m} \right) - \sum_{j \neq i} \left([p_j] - m_j \right) \left[\frac{\partial y_k^{\text{m}}}{\partial p_j} \right] \left([\mathbf{p}] \right) \right) / \left[\frac{\partial y_k^{\text{m}}}{\partial p_i} \right] \left([\mathbf{p}] \right) + n_i$$

$$(2)$$

for $i = 1, ..., n_p$.

Requires sensitivity function of the model output.

2.11.1 Sensitivity functions

First-order sensitivity of x_j with respect to p_k by

$$s_{jk}\left(\mathbf{p},t\right) = \frac{\partial x_j}{\partial p_k}\left(\mathbf{p},t\right). \tag{3}$$

For model output is linear in state and given by

$$\mathbf{h}\left(\mathbf{x}\left(t\right),\mathbf{p}\right) = \mathbf{M}\mathbf{x}\left(t\right),\tag{4}$$

where **M** is a known matrix. Jacobian matrix of $\mathbf{h}(\mathbf{x}(t), \mathbf{p})$ then given by

$$\mathbf{J}_{h}\left(\mathbf{p},t\right) = \mathbf{M}\frac{\partial \mathbf{x}\left(\mathbf{p},t\right)}{\partial \mathbf{p}},\tag{5}$$

with

$$\frac{\partial \mathbf{x} \left(\mathbf{p}, t \right)}{\partial \mathbf{p}} = \left(s_{jk} \left(\mathbf{p}, t \right) \right), j = 1, \dots, \dim \mathbf{x}, k = 1, \dots, \dim \mathbf{p}.$$
(6)

To compute s_{jk} , differentiate the *j*th row of

$$\frac{d\mathbf{x}}{dt} = \mathbf{f}\left(\mathbf{x}, \mathbf{p}\right) \tag{7}$$

(8)

to get

$$s_{jk}' = \frac{\partial f_j(\mathbf{x}, \mathbf{p})}{\partial x_j} s_{jk} + \frac{\partial f_j(\mathbf{x}, \mathbf{p})}{\partial p_k}.$$

When $\mathbf{x}(t_0)$ is assumed to be known, the initial conditions are

$$s_{jk}(t_0) = \frac{\partial \mathbf{x}(t_0)}{\partial p_k} = 0.$$

Sensitivity function obtained by considering extended state-space model consisting of

- the dynamical part of (7),
- all differential equations (8) satisfied by the sensitivity functions.

2.11.2 Example

Figure 4: Two-compartment model

State equation obtained from conservation law as

$$\mathbf{x}' = \mathbf{f} \left(\mathbf{x}, \mathbf{p}, u \right), \tag{9}$$

where $\mathbf{p} = (k_{21}, k_{12}, k_{01})^{\mathrm{T}}$ and

$$\mathbf{f}(\mathbf{x}, \mathbf{p}, u) = \begin{pmatrix} -(p_1 + p_3)x_1 + p_2x_2 + u\\ p_1x_1 - p_2x_2 \end{pmatrix}.$$
 (10)

Quantity of material in Compartment 2 observed, so

$$y_{\rm m}(t_i, \mathbf{p}) = x_2(t_i, \mathbf{p}), \ i = 1, ..., n_{\rm t}.$$

Assume that there is no input $(u \equiv 0)$ and that the initial condition is known to be $\mathbf{x}_0 = (1, 0)^{\mathrm{T}}$.

Differentiating

$$\mathbf{f}(\mathbf{x}, \mathbf{p}, u) = \begin{pmatrix} -(p_1 + p_3)x_1 + p_2x_2 + u\\ p_1x_1 - p_2x_2 \end{pmatrix}.$$
 (11)

with respect to each of the parameters in turn, one gets

$$s_{11}' = -(p_1 + p_3) s_{11} + p_2 s_{21} - x_1,$$

$$s_{21}' = p_1 s_{11} - p_2 s_{21} + x_1,$$

$$s_{12}' = -(p_1 + p_3) s_{12} + p_2 s_{22} + x_2,$$

$$s_{22}' = p_1 s_{12} - p_2 s_{22} - x_2,$$

$$s_{13}' = -(p_1 + p_3) s_{13} + p_2 s_{23} - x_1,$$

$$s_{23}' = p_1 s_{13} - p_2 s_{23}.$$
(12)

When \mathbf{x}_0 independent on \mathbf{p} , initial conditions for sensitivity equations are zero.

Coupled system is not cooperative.

Müller's theorem may be helpful.

2.11.3 Reader's Digest Version of Müller's Theorem

Consider the (uncertain) model

$$\dot{\mathbf{x}} = \mathbf{f} \left(\mathbf{x} \left(t \right), \mathbf{p}, t \right), \ \mathbf{x} \left(0 \right) \in \left[\underline{\mathbf{x}}_{0}, \overline{\mathbf{x}}_{0} \right],$$

with $\mathbf{f}(\mathbf{x}, \mathbf{p}, t)$ continuous on

$$\mathbb{T}: \begin{cases} \boldsymbol{\omega}\left(t\right) \leqslant \mathbf{x} \leqslant \boldsymbol{\Omega}\left(t\right) \\ \underline{\mathbf{p}}_{0} \leqslant \mathbf{p} \leqslant \overline{\mathbf{p}}_{0} \\ 0 \leqslant t \leqslant T \end{cases}$$

Assume that

1.
$$\boldsymbol{\omega}(0) = \underline{\mathbf{x}}_{0} \text{ and } \boldsymbol{\Omega}(0) = \overline{\mathbf{x}}_{0},$$

2.
$$D^{\pm} \boldsymbol{\omega}_{i}(t) \leq \min_{\underline{\mathbb{T}}_{i}(t)} f_{i}(\mathbf{x}, \mathbf{p}, t), \\ D^{\pm} \boldsymbol{\Omega}_{i}(t) \geq \max_{\overline{\mathbb{T}}_{i}(t)} f_{i}(\mathbf{x}, \mathbf{p}, t), \end{array}, \right\} \text{ for } i = 1 \dots \dim \mathbf{x}$$

with $\underline{\mathbb{T}}_{i}(t)$ the subset of \mathbb{T} defined as

$$\underline{\mathbb{T}}_{i}(\tau): \begin{cases} x_{i} = \omega_{i}(t), \\ \omega_{j}(t) \leqslant x_{j} \leqslant \Omega_{j}(t), \ j \neq i, \\ \underline{\mathbf{p}}_{0} \leqslant \mathbf{p} \leqslant \overline{\mathbf{p}}_{0}, \\ t = \tau, \end{cases}$$

and $\overline{\mathbb{T}}_{i}(t)$ as $\underline{\mathbb{T}}_{i}(t)$ but with $\omega_{i}(t)$ replaced by $\Omega_{i}(t)$.

Then, for any $\mathbf{x}(0) \in [\underline{\mathbf{x}}_0, \overline{\mathbf{x}}_0]$, $\mathbf{p} \in [\underline{\mathbf{p}}_0, \overline{\mathbf{p}}_0]$, and $t \in [0, T]$, a solution exists, such that

 $\boldsymbol{\omega}\left(t\right)\leqslant\mathbf{x}(t)\leqslant\boldsymbol{\Omega}\left(t\right).$

 \Diamond

If $\mathbf{f}(\mathbf{x}, \mathbf{p}, t)$ is Lipschitz with respect to \mathbf{x} , this solution is the unique one.

 $[\mathbf{\Phi}](t) = [\boldsymbol{\omega}(t), \mathbf{\Omega}(t)]$ is an *inclusion function* for all $\mathbf{x}(\mathbf{p}, t)$.

Building $\boldsymbol{\omega}(t)$ and $\boldsymbol{\Omega}(t)$ is usually easy on a case-by-case basis.

2.11.4 Application of Müller's theorem

Obtaining **x**, s_{11} , and s_{21} via the simulation of the two 6th-order *deterministic* ODEs

$$\begin{cases} \underline{x}_{1}^{\prime} = -(\overline{p}_{1} + \overline{p}_{3})\underline{x}_{1} + \underline{p}_{2}\underline{x}_{2}, \\ \underline{x}_{2}^{\prime} = \underline{p}_{1}\underline{x}_{1} - \overline{p}_{2}\underline{x}_{2}, \\ \overline{x}_{1}^{\prime} = -(\underline{p}_{1} + \underline{p}_{3})\overline{x}_{1} + \overline{p}_{2}\overline{x}_{2}, \\ \overline{x}_{2}^{\prime} = \overline{p}_{1}\overline{x}_{1} - \underline{p}_{2}\overline{x}_{2}, \\ \underline{s}_{11}^{\prime} = -(\overline{p}_{1} + \overline{p}_{3})\underline{s}_{11} + \underline{p}_{2}\underline{s}_{21} - \overline{x}_{1}, \\ \underline{s}_{21}^{\prime} = \underline{p}_{1}\underline{s}_{11} - \overline{p}_{2}\underline{s}_{21} + \underline{x}_{1} \end{cases}$$
(13)

and

$$\begin{aligned}
\underline{x}_{1}' &= -(\overline{p}_{1} + \overline{p}_{3})\underline{x}_{1} + \underline{p}_{2}\underline{x}_{2}, \\
\underline{x}_{2}' &= \underline{p}_{1}\underline{x}_{1} - \overline{p}_{2}\underline{x}_{2}, \\
\overline{x}_{1}' &= -(\underline{p}_{1} + \underline{p}_{3})\overline{x}_{1} + \overline{p}_{2}\overline{x}_{2}, \\
\overline{x}_{2}' &= \overline{p}_{1}\overline{x}_{1} - \underline{p}_{2}\overline{x}_{2}, \\
\overline{x}_{1}' &= -(\underline{p}_{1} + \underline{p}_{3})\overline{s}_{11} + \overline{p}_{2}\overline{s}_{21} - \underline{x}_{1}, \\
\overline{s}_{21}' &= \overline{p}_{1}\overline{s}_{11} - \underline{p}_{2}\overline{s}_{21} + \overline{x}_{1}.
\end{aligned} \tag{14}$$

2.11.5 Example - continued

Artificial data generation:

- "true" value of the parameter vector $\mathbf{p}^* = (0.6, 0.15, 0.35)^{\mathrm{T}}$ simulated,
- data obtained by rounding $x_2(t_i)$ to nearest two-digit number for $t_i = i\Delta t$, with $\Delta t = 1$ s and i = 1, ..., 15,
- initial search domain is $[\mathbf{p}]_0 = [0.01, 1]^{\times 3}$.

Three versions of SIVIA algorithm

- NIF, the natural inclusion function is used;
- CF uses the centered form,
- CF-CP uses the contractor.

Volume of the solution set as a function of computing time (in seconds)

Projection on the (p_1, p_2) -plane of outer-approximations of the solution set obtained for various values of the precision parameter ε (from left to right, $\varepsilon = 0.01$, $\varepsilon = 0.005$, $\varepsilon = 0.001$, and $\varepsilon = 0.0005$), and for NIF, CF, and CF-CP.

Projection on the (p_2, p_3) -plane of outer-approximations of the solution set obtained for various values of the precision parameter ε (from left to right, $\varepsilon = 0.01$, $\varepsilon = 0.005$, $\varepsilon = 0.001$, and $\varepsilon = 0.0005$), and for NIF, CF, and CF-CP.

Conclusions

- Interval techniques provide guaranteed enclosure of the solution
- ICP or SIVIA + ICP allows more unknown parameters than SIVIA but require an explicit solution for the model
- Alternative approach needs only state equation but still time-consuming
 - \leftarrow Guaranteed integration of ODE
 - \leftarrow Contractors usable provided that sensitivity functions are employed