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1 Interval analysis

Provides efficient techniques to

• perform guaranteed deterministic global optimization,

• evaluate all solutions of a set of nonlinear equations

• compute inner and outer approximation of the set of vectors consistent with a

set of inequalities

• ...



Has lead to numerous applications

• Bounded-error parameter and state estimation of nonlinear systems

• Robust bounded-error parameter and state estimation

• Parameter estimation by global optimization

• Structural identifiability study

• Distributed estimation

• ...



1.1 Interval arithmetic primer

Introduced by Sunaga in Japan and by Moore in the USA.

Limited impact until beginning of the 90s

=⇒ various reasons, among which implementation issues

Many books, code libraries, lists

http://www.cs.utep.edu/interval-comp/main.html



1.1.1 Interval of real numbers

Closed and bounded subset of R

[x] = [x, x] = {x ∈ R|x ≤ x ≤ x} .

It is a set =⇒ notions such as

=,∈,⊂,∩

are well defined.

When considering ∪

[x] ∪ [y] =
[
min(x, y),max(x, y)

]
.



Other characteristics of an interval

Width

w ([x]) = x− x,

Midpoint

m ([x]) =
x+ x

2
.



1.1.2 Basic operations

May be extended to intervals

◦ ∈ {+,−,×, /} , [x] ◦ [y] = {x ◦ y|x ∈ [x] et y ∈ [y]} .

More specifically
[x] + [y] =

[
x+ y, x+ y

]
,

[x]− [y] =
[
x− y, x− y

]
,

[x]× [y] =
[
min

(
x.y, x.y, x.y, x.y

)
,max

(
x.y, x.y, x.y, x.y

)]
,

[x] / [y] = [x]×
[
1/y, 1/y

]
, si 0 /∈ [y] et ind fini sinon.



1.1.3 Inclusion function

Range of a function over an interval

f ([x]) = {f (x) |x ∈ [x]}

=⇒ difficult to obtain in general

=⇒ sometimes even not an interval

Inclusion function [f ] (.) of f (.) satisfies

∀ [x] ⊂ R, f ([x]) ⊂ [f ] ([x]) .

Inclusion function is minimal if ⊂ may be replaced by =.

Convergent inclusion function

if w ([x])→ 0, then w ([f ] ([x]))→ 0.



Inclusion function easy to build for monotone functions√
[x] =

[√
x,
√
x
]
, si x ≥ 0,

exp ([x]) = [exp (x) , exp (x)] ,

tan ([x]) = [tan (x) , tan (x)] , if [x] ⊆ [−π/2, π/2] .

More complicated for other elementary functions

=⇒ algorithm required for sin, cos, . . .

=⇒ natural inclusion function



Usually, an inclusion function is not minimal

f x( ) f x( )

x x

[ ]x [ ]x

[ ]([ ])f x [ ]([ ])f x

=⇒ some overestimation of the range (pessimism).

Natural inclusion function

⇓
Remplace each real variable by its interval counterpart

x −→ [x]



1.1.4 Example

f1(x) = x(x+ 1), f3(x) = x2 + x,

f2(x) = x× x+ x, f4(x) = (x+ 1
2 )2 − 1

4 .

Results for [x] = [−1, 1]

[f1] ([x]) = [x] ([x] + 1) = [−2, 2] ,

[f2] ([x]) = [x]× [x] + [x] = [−2, 2] ,

[f3] ([x]) = [x]
2

+ [x] = [−1, 2] ,

[f4] ([x]) =
(
[x] + 1

2

)2 − 1
4 =

[
− 1

4 , 2
]
.

Only [f4] (.) is minimal ⇐⇒ minimum number of occurences of the interval

variable
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1.1.5 Centred form

For f : D −→ R, differentiable over [x] ⊂ D, one has ∀x,m ∈ [x] , ∃ξ ∈ [x] such

that

f (x) = f (m) + (x−m) f ′ (ξ) .

Then

f (x) ∈ f (m) + (x−m) f ′ ([x]) ,

and

f ([x]) ⊆ f (m) + ([x]−m) [f ′] ([x]) .

Centred form is the inclusion function defined by

[f ]c ([x]) = f (m) + ([x]−m) [f ′] ([x])



Interpretation of the centred form



1.1.6 Example

Consider

f (x) = x2 exp(x)− x exp
(
x2
)
.

Compar the natural inclusion fonction and the centred form

[x] f ([x]) [f ] ([x]) [f ]c ([x])

[0.5, 1.5] [−4.148, 0] [−13.82, 9.44] [−25.07, 25.07]

[0.9, 1.1] [−0.05380, 0] [−1.697, 1.612] [−0.5050, 0.5050]

[0.99, 1.01] [−0.0004192, 0] [−0.1636, 0.1628] [−0.004656, 0.004656]



1.1.7 Extension to vectors of intervals

Vector of intervals or box

[x] = [x1]× · · · × [xn] .

Vector inclusion function



2 Parameter estimation

System

Model
( )M p

y t( )

y tm( , )p

y : vector of experimental data

p : vector of unknown, constant parameters

ym (p) : vector of model output

Parameter estimation :

Determination of p̂ from y.



2.1 Problem formulation

1. Minimisation of a cost function, e.g.,

p̂ = arg min
p
j (p) = (y − ym (p))

T
(y − ym (p))

• Local techniques : Gauss-Newton, Levenberg-Marquardt. . .

• Random search : simulated annealing, genetic algorithms. . .

• Global guaranteed techniques : Hansen’s algorithm

2.



2.2 Parameter bounding

Experimental data : y (ti),

ti, i = 1 . . . , N, known measurement times

[εi] = [εi, εi], i = 1, . . . , N, known acceptable errors

p ∈ P0 deemed acceptable if for all i = 1, . . . , N,

εi 6 y (ti)− ym (p, ti) 6 εi.

=⇒ Bounded-error parameter estimation :

Characterize S = {p ∈ P0 | y (ti)− ym (p, ti) ∈ [εi, εi] , i = 1, . . . , N}



• When ym (p, ti) is linear in p

– exact description by polytopes

(Walter and Piet-Lahanier, 1989. . . )

– outer approximation by ellipsoids, polytopes, ...

(Schweppe, 1973 ; Fogel ang Huang, 1982. . . )

• When ym (p, ti) is non-linear in p

– outer approximation by polytopes, ellipsoids. . .

(Norton, 1987 ; Clément and Gentil, 1988 ; Cerone, 1991...)

– approximate but guaranteed enclosure of S by Sivia

(Moore, 1992 ; Jaulin and Walter 1993)



2.3 Robust parameter bounding

S
1

S
2

S
3

S
S =

⋂
`=1...N

S`,

avec

S` = {p ∈ P0 | ym` (p)− y` ∈ [ε`, ε`]}

Interval analysis [?, ?], [?] allows to get

S ⊂ S ⊂ S

No consistent p is missed =⇒ guaranteed set estimate.



S
1

S
2

S
3

When the solution set is empty

S =
⋂

`=1...N

S` = ∅.

Hypothesis on model or noise violated



S
r

1

S
2

S
3

S
1

Estimator robust against n outliers

Srn =
⋃

16`1<···<`n6N

⋂
` 6=`1,...,` 6=`N

S`.

Intersection of N − n sets among N

Interval analysis =⇒ non-combinatorial solution

Srn =

{
p ∈ P0 |

N∑
`=1

t` (p) ≥ N − n

}
with

t` (p) = (ym` (p)− y` ∈ [ε`, ε`])

Srn evaluated with a complexity similar to that of S



2.4 Sivia

Set to be characterized

S = {p ∈ P0 | y (ti)− ym (p, ti) ∈ [εi, εi] , i = 1, . . . , N}

= {p ∈ P0 | ym (p) ⊂ Y} ,

with

Y = [y(t1)− ε1, y (t1)− ε1]× · · · × [y(tN )− εN , y (tN )− εN ]

?

p2

p1

y pm( ) YP0

Parameter space Data space



?

YY

p2

p1

P0

Parameter space Data space

ym

[ ]([ ])pym

([ ])p

Yellow box is undetermined



?

Y

p2

p1

P0

Parameter space Data space

ym

[ ]([ ])pym

([ ])p

Red box proven to be outside S



?

YY

p2

p1

ym

[ ]([ ])pym

P0

Parameter space Data space

([ ])p

Green box proven to be included in S



2.5 Sivia with contractors

Reduce the size of undetermined boxes without any bisection

? ?

Contractor

p2

p1

X0

Parameter space

p2

p1

Parameter space

Contractors (Jaulin et al, 2001) based on

• interval constraint propagation

• linear programming

• parallel linearization

• ...



Example of interval constraint propagation

ym (p) = p1 exp (−p2) ,

p1 ∈ [p1]
0

= [−2, 2] , p2 ∈ [p2]
0

= [−2, 2] .

One want to characterise the set

S =
{

p ∈ [p1]
0 × [p2]

0 | ym (p) ⊂ [1, 2]
}
.



One may write that

p1 exp (−p2) ∈ [1, 2] ,

thus

p1 ∈ [−2, 2] ∩
(

[1, 2]

exp ([−2, 2])

)
= [−2, 2] ∩ [0.1353, 14.78]

∈ [0.1353, 2] .

Similarly for p2, one has

p2 ∈ [−2, 2] ∩
(
− ln

(
[1, 2]

[0.1353, 2]

))
= [−2, 2] ∩ [−2.6932, 0.6932]

∈ [−2, 0.6932]



2.6 Example

Estimation of the parameters of a compartmental model

1 2

State equation x′1 = − (k01 + k21)x1 + k12x2

x′2 = k21x1 − k12x2
with

 x1 (0) = 0

x2 (0) = 0

Observation equation

y (ti) = x2 (ti) + b (ti) , i = 1, . . . , 16



Model

ym (p, ti) = p1 (exp (p2ti)− exp (p3ti)) , i = 1, . . . , 16,

where the macroparameters

p = (p1, p2, p3)
T

depends on the microparameters

(k01, k12, k21) .

0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8 10 12 14 16

t

Simulated

noisy experimental data



Macroparameter estimation with

εi = −0.09, εi = 0.09, i = 1, . . . , 16

Results

Sivia Sivia + ICP ICP only

Comp. time (s) 8 6.2 0.63

[0.49, 1.06] [0.49, 1.06] [0.52, 0.98]

Bounding box [−0.293,−0.141] [−0.293,−0.141] [−0.282,−0.156]
[−5,−1.054] [−5,−1.054] [−5,−1.167]



2.7 Limitations

To test [p] , Sivia evaluates [ym] ([p] , ti), i = 1, . . . , 16 :

• explicit expression of ym (p, ti) required

• if available, can be complicated, e.g., here

ym (p, ti) =
k21√

(k01 − k12 + k21) + 4k12k21
×(

exp

(
−
(
(k01 + k12 + k21) +

√
(k01 − k12 + k21) + 4k12k21

) ti
2

)
− exp

(
−
(
(k01 + k12 + k21)−

√
(k01 − k12 + k21) + 4k12k21

)) ti
2

)

↪→ multiple occurences

↪→ non-minimal inclusion functions



2.8 Alternative approach

Guaranteed numerical integration of state equation

State equation

x′ =
dx

dt
= f (x,p∗,w,u) ,

where

w : state perturbation assumed bounded,

u : known input.

Observation equation

y (ti) = h (x (p∗, ti)) + v (ti) , i = 1, . . . , N ,

where

v : measurement noise assumed bounded.



Example of model output

ym (p, ti) = h (x (p, ti)) , i = 1, . . . , N .

Sivia requires tight enclosure of ym ([p] , ti)

⇒ integration of dynamical system with large [p]

↪→ important wrapping effect

↪→ pessimism introduced

For general models, guaranteed numerical integration not adapted.

But can be used for cooperative systems.



2.9 Parameter estimation for cooperative systems

Tight enclosures of ym ([p] , ti) easily obtained for cooperative systems.

Definition 1 (Smith, 94) The dynamical system

x′ = f (x, t) ,

where f (x, t) is continuous and differentiable is cooperative on a domain D if

∂fi
∂xj

> 0, for any i 6= j, t > 0 and x ∈ D.



Theorem 1 (Smith, 94) Consider the system

x′ =
dx

dt
= f (x,p,w,u) .

If there exists a pair of cooperative systems x′ = f (x,t)

x′ = f (x,t)

satisfying

• f (x,t) 6 f (x,p,w,u) 6 f (x,t) ,

for any p ∈
[
p,p

]
, w ∈ [w (t) ,w (t)] , t > 0 and x ∈ D,

• x0 6 x (0) 6 x0,

then

x (t) 6 x (t) 6 x (t) , for any t > 0,

with

• x (t) = φ (x0, t) the flow corresponding to {x′ = f (x,t) ,x (0) = x0}

• x (t) = φ (x0, t) the flow corresponding to
{
x′ = f (x,t) ,x (0) = x0

}
.



x( )t
i

x( )t
i+1

x( )t
i

x( )t
i+1

x( )t
i+1

x( )t
i

_

_

_

_

x

t



Steps to build an inclusion function for ym ([p] , ti)

1. Find a pair of cooperative systems satisfying

f (x,t) 6 f (x,p,w,u) 6 f (x,t) ,

for all p ∈
[
p,p

]
, w ∈ [w (t) ,w (t)] , t > 0 and x ∈ D.

2. Integrate  x′ = f (x,t)

x′ = f (x,t)
with

 x (0) = x0

x (0) = x0

with guaranteed ODE solvers to get
[
φ (x0, ti)

]
=
[
φ (x0, ti), φ (x0, ti)

]
[
φ (x0, ti)

]
=
[
φ (x0, ti), φ (x0, ti)

] , i = 1, . . . , N

3. The box-valued function

[[φ]] ([x] , ti) =
[
φ (x, t), φ (x, ti)

]
is an inclusion function for x (ti)



and the box-valued function

[h] ([[φ]] ([x] , ti))

is thus an inclusion function for ym ([p] , ti).



2.10 Example

1

23

k
1

k
2

k
4

k
5

k
3

u
Compartmental model

of the behaviour of a drug

(Glafenine) administered orally.


x′1 = −(k1 + k2)x1 + u

x′2 = k1x1 − (k3 + k5)x2

x′3 = k2x1 + k3x2 − k4x3

ym (p,t) = (x2 (p,t) , x3 (p,t))
T
.

Unknown parameter vector p∗ = (k1, k2, k3, k4, k5)
T

, with p∗> 0.



Can be bounded between
x′1 = −(k1 + k2)x1 + u

x′2 = k1x1 −
(
k3 + k5

)
x2

x′3 = k2x1 + k3x2 − k4x3

and


x′1 = −(k1 + k2)x1 + u

x′2 = k1x1 − (k3 + k5)x2

x′3 = k2x1 + k3x2 − k4x3

=⇒ two cooperative systems

Guaranteed numerical integration provides

inclusion function for ym (p,t), here minimal.



Simulation conditions

p∗ = (0.6, 0.8, 1, 0.2, 0.4)
T

Imput u (t) = δ (t)

Outputs of Compartments 2 and 3 have

been measured at ti = 0.5i,

i = 1, . . . , 20.

Introduction of bounded relative

random noise

ỹi → yi (1 + εi)

with εi random in [−0.01, 0.01].

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

Compartment 2 (+)

Compartment 3 (o)



Solution

Precision parameter : ε = 0.01

Computing time : 15 mn on an Athlon 1800

Bounding box :

S ⊂ [0.586, 0.625]× [0.74, 0.85]

× [0.81, 1.25]× [0.185, 0.215]× [0.235, 0.56]

contains p∗.



0.58 0.585 0.59 0.595 0.6 0.605 0.61 0.615 0.62 0.625

0.75

0.8

0.85

0.9

x axis

y 
ax

is

Figure 1: Projection onto the (k1, k2)−plane
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Figure 2: projection onte the (k3, k4)−plane
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Figure 3: Projection onto the (k4, k5)−plane



2.11 How contractors may be used again?

All values of the parameter vector p ∈ S satisfy

ym (p) ∈ [y] =
[
y,y

]
,

which leads to  ym (p)− y > 0

−ym (p) + y > 0
. (1)

Centered form, for the model output: For the kth component ymk (p) of ym (p) ,

for all p ∈ S ⊂ [p] and m ∈ [p] , (1) translates into ymk (m) +
∑np

j=1 ([pj ]−mj)
[
∂ym

k

∂pj

]
([p])− y

k
> 0,

−ymk (m)−
∑np

j=1 ([pj ]−mj)
[
∂ym

k

∂pj

]
([p]) + yk > 0,

for k = 1, . . . ,dim ym (p).



Contracted domain [p]
new

= Ck ([p]), with components

[pi]
new

= [pi]∩

[y
k
, yk

]
− ymk (m)−

∑
j 6=i

([pj ]−mj)

[
∂ymk
∂pj

]
([p])

 /

[
∂ymk
∂pi

]
([p]) +mi

 ,

(2)

for i = 1, . . . , np.

Requires sensitivity function of the model output.



2.11.1 Sensitivity functions

First-order sensitivity of xj with respect to pk by

sjk (p, t) =
∂xj
∂pk

(p, t) . (3)

For model output is linear in state and given by

h (x (t) ,p) = Mx (t) , (4)

where M is a known matrix. Jacobian matrix of h (x (t) ,p) then given by

Jh (p, t) = M
∂x (p, t)

∂p
, (5)

with
∂x (p, t)

∂p
= (sjk (p, t)) , j = 1, . . . ,dim x, k = 1, . . . ,dim p. (6)



To compute sjk, differentiate the jth row of

dx

dt
= f (x,p) (7)

to get

s′jk =
∂fj (x,p)

∂xj
sjk +

∂fj (x,p)

∂pk
. (8)

When x (t0) is assumed to be known, the initial conditions are

sjk (t0) =
∂x (t0)

∂pk
= 0.

Sensitivity function obtained by considering extended state-space model

consisting of

• the dynamical part of (7),

• all differential equations (8) satisfied by the sensitivity functions.



2.11.2 Example

1

k
01

k
21

k
12

2

u

Figure 4: Two-compartment model

State equation obtained from conservation law as

x′ = f (x,p, u) , (9)

where p = (k21, k12, k01)
T

and

f (x,p, u) =

 − (p1 + p3)x1 + p2x2 + u

p1x1 − p2x2

 . (10)



Quantity of material in Compartment 2 observed, so

ym (ti,p) = x2 (ti,p) , i = 1, ..., nt.

Assume that there is no input (u ≡ 0) and that the initial condition is known to

be x0 = (1, 0)
T

.



Differentiating

f (x,p, u) =

 − (p1 + p3)x1 + p2x2 + u

p1x1 − p2x2

 . (11)

with respect to each of the parameters in turn, one gets

s′11 = − (p1 + p3) s11 + p2s21 − x1,
s′21 = p1s11 − p2s21 + x1,

s′12 = − (p1 + p3) s12 + p2s22 + x2,

s′22 = p1s12 − p2s22 − x2,
s′13 = − (p1 + p3) s13 + p2s23 − x1,
s′23 = p1s13 − p2s23.

(12)

When x0 independent on p, initial conditions for sensitivity equations are zero.

Coupled system is not cooperative.

Müller’s theorem may be helpful.



2.11.3 Reader’s Digest Version of Müller’s Theorem

Consider the (uncertain) model

ẋ = f (x (t) ,p, t) , x (0) ∈ [x0,x0] ,

with f (x,p, t) continuous on

T :


ω (t) 6 x 6 Ω (t)

p
0
6 p 6 p0

0 6 t 6 T



Assume that

1. ω (0) = x0 and Ω (0) = x0,

2.

D±ωi (t) 6 minTi(t)
fi (x,p,t) ,

D±Ωi (t) > maxTi(t)
fi (x,p,t) ,

,

 for i = 1 . . . dim x

with Ti (t) the subset of T defined as

Ti (τ) :


xi = ωi (t) ,

ωj (t) 6 xj 6 Ωj (t) , j 6= i,

p
0
6 p 6 p0,

t = τ,

and Ti (t) as Ti (t) but with ωi (t) replaced by Ωi (t) .



Then, for any x (0) ∈ [x0,x0], p ∈ [p
0
,p0], and t ∈ [0, T ], a solution exists, such

that

ω (t) 6 x(t) 6 Ω (t) .

If f (x,p, t) is Lipschitz with respect to x, this solution is the unique one. ♦

[Φ] (t) = [ω (t) ,Ω (t)] is an inclusion function for all x (p,t).

Building ω (t) and Ω (t) is usually easy on a case-by-case basis.



2.11.4 Application of Müller’s theorem

Obtaining x, s11, and s21 via the simulation of the two 6th-order deterministic

ODEs 

x′1 = −(p1 + p3)x1 + p
2
x2,

x′2 = p
1
x1 − p2x2,

x′1 = −(p
1

+ p
3
)x1 + p2x2,

x′2 = p1x1 − p2x2,
s′11 = −(p1 + p3)s11 + p

2
s21 − x1,

s′21 = p
1
s11 − p2s21 + x1

(13)



and 

x′1 = −(p1 + p3)x1 + p
2
x2,

x′2 = p
1
x1 − p2x2,

x′1 = −(p
1

+ p
3
)x1 + p2x2,

x′2 = p1x1 − p2x2,
s′11 = −(p

1
+ p

3
)s11 + p2s21 − x1,

s′21 = p1s11 − p2s21 + x1.

(14)



2.11.5 Example - continued

Artificial data generation:

• ”true” value of the parameter vector p∗ = (0.6, 0.15, 0.35)
T

simulated,

• data obtained by rounding x2(ti) to nearest two-digit number for ti = i∆t,

with ∆t = 1 s and i = 1, . . . , 15,

• initial search domain is [p]0 = [0.01, 1]
×3
.

Three versions of Sivia algorithm

• NIF, the natural inclusion function is used;

• CF uses the centered form,

• CF-CP uses the contractor.
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Projection on the (p1, p2)-plane of outer-approximations of the solution set obtained for various

values of the precision parameter ε (from left to right, ε = 0.01, ε = 0.005, ε = 0.001, and

ε = 0.0005), and for NIF, CF, and CF-CP.
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Conclusions

• Interval techniques provide guaranteed enclosure of the solution

• ICP or Sivia + ICP allows more unknown parameters than Sivia

but require an explicit solution for the model

• Alternative approach needs only state equation

but still time-consuming

← Guaranteed integration of ODE

← Contractors usable provided that sensitivity fiunctions are employed


