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1
Preface

A partial reversal of this bizarre partition of the world into the

living and the nonliving came with the proofs that living forms are

not, in fact, constant, but over the long range have evolved and

that the family of this evolution can be traced.

Max Delbrück, Nobel Lecture

The enormous success of describing real-world phenomena with mathematical models becomes

eminently apparent in physics. This success is due to the discovery of fundamental symmetries

such as the Lorenzian invariance of the state space, local gauge symmetries, etc. which can

be formulated in a mathematical precise way. The aim of theoretical concepts in physics is to

reduce the complexity of observed phenomena to fundamental principles. However, this can

only be achieved with an interplay of experiments and theory. Results from experiments may

lead to a refinement of the theory, whereas theoretical predictions are often the driving-force

for initiating new experiments. Limitations in either experimental or theoretical methods, in

fact, hamper the identification of the underlying principles.

The separation of the world into the living and the unliving parts, as Max Delbrück

notes in his Nobel lecture, arose during the Renaissance with the ascendance of physics

as being science in our modern sense. In fact, it seems to be natural that the mode of

describing the laws of nature significantly differs between the life sciences and physics. This

difference can be expressed following J. Knight in [1] by: ”Physics uses mathematics to

represent the laws of nature; molecular biology relies on words and diagrams to describe the

function of living things. The essence of physics is to simplify, whereas molecular biology

strives to tease out the smallest details.” With the foundation of molecular biology, about

50 years ago, the aforementioned separation of the world into the living and the unliving

parts can be regarded as being obsolete. During the last decade, the accomplishment of

genome sequencing for several species, the possibility of performing single cell measurements,

1



2 Preface Chapter 1

and the development of other high throughput measurement techniques offered an immense

richness of detailed experimental facts to the life sciences. Like in physics, those experimental

results have to be condensed into a comprehensive theory in order to uncover the underlying

principles. Thus, out of the need for a mathematical theory, systems biology recently emerged

as interdisciplinary field of research.

Since the complexity of living things is enormous, only an interdisciplinary approach is

feasible to formulate a theory which is useful to disentangle the underlying principles. In de-

tail, the rich experience of modelling complex systems can be obtained from physics, whereas

new mathematical theory is provided by mathematicians. Most importantly, the background

and the conductance of further experiments is devoted to the biologists. However, like each

interdisciplinary approach, every participating discipline is enriched by the others with new

ideas and concepts. The best example for this mutual enrichment is the strong interdisci-

plinary connection of mathematics and physics. For instance, the formulation of the theory

of general relativity, on one side, heavily influenced the development of differential geometry.

On the other side, the formulation of the Einstein equations would have been impossible

without Riemannian geometry. Systems biology can thus be regarded as an attempt to at-

tach the life sciences to the preexisting interdisciplinary conglomerate of mathematics and

physics in order to tackle the complexity of life. Also essential for this endeavor, as noted in

a recent editorial of Nature Cell Biology [2], is the interplay of experiments and theory.

In the following, concepts from statistical physics and nonlinear dynamics are consulted

to develop theoretical methods for the life sciences. To this end, a route is chosen which

leads from synchronization of macroscopic systems over biochemical reaction networks to the

evolution of the DNA on a microscopic scale. In Chapter 2, concepts for synchronization

analysis are developed. Synchronization of non-linear self-sustained oscillating systems not

only occur in physics, as Josephson contacts in electromagnetic fields or organ pipes but

increasingly many in life science. Here, prominent examples are the synchronous behavior of

neurons in the brain or the synchronization of the circadian oscillator (day-night rhythm) with

sun light, see e.g. [3]. The principle of synchronization is, in fact, an important concept for

studying complex systems. If a mathematical description of two oscillating systems is given,

synchronous behavior between these systems can often be derived analytically. However, in

the case where only partial or no mathematical models are at hand, one would like to infer

synchronization on the basis of measurements. For this purpose, a statistical test is derived

in Chapter 2 using phase synchronization, which is the weakest type of synchronization and

can be observed for deterministic as well as for stochastic systems. This offers the possibility

to apply the derived test statistics for a wide range of data. The only limitation is that

statistical dependencies have to vanish between distant phases in time of the underlying

processes. This property is called mixing and is, beside ergodicity, one of the most important

features of dynamical systems. A process where this mixing property is in doubt is the

Rössler system. In Chapter 3, this system is examined in detail, where consequences for

synchronization and spectral analysis resulting from a lack of mixing are discussed.

Biochemical reaction schemes can be represented by complex networks, graphs. Vertices

of these graphs represent biochemical substances, whereas reactions between substances are
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expressed by the edges. For example, an edge between vertex i and j shows that substance

i is transformed to substance j by a biochemical reaction. However, these graphs are not

static in time, but changing by the biological evolution. Of course, complex networks are not

uniquely linked to biochemical reactions but can also be found throughout various scientific

disciplines. In physics graphs arise naturally by the loop-expansion in quantum field theory

or in statistical mechanics. Evolving networks, such as the biochemical reaction network,

can be studied in the limit where the amount of vertices is infinite. In this limit, the degree

distribution of a randomly chosen vertex is an important feature in graph theory. Here, the

degree is defined by the number of edges leaving or approaching a vertex. Over an ensemble

of randomly generated graphs, the degree distribution often scales like a power law. These

graphs are called scale-free, where graphs which scale faster than a power law are called

scale-rich. Based on a proposed measure which captures the interior statistical dependency

structure of graphs, conditions for the emergence of scale-rich networks are derived in Chap-

ter 4. The obtained results can be regarded as a first step toward a central limit theorem for

random graphs and clarifies the predominant occurrence of scale-free networks.

From a biochemical reaction network, a mathematical model can often be formulated

to describe the dynamics of the reactions itself using ordinary differential equations. Since

chemical reactions of several proteins are too complex to be treated, e.g., with quantum

chemistry, all of these models are phenomenological and contain unknown reaction rates. To

validate and to predict the behavior of the models, the problem of estimating the unknown

parameters arises. This leads to an optimization problem which in general contains multiple

local optima. In Chapter 5, a parameter estimation method of ordinary differential equations

is formulated which outperforms the standard approach in terms of convergence to the global

optimum. In addition, the proposed method is numerically efficient; this offers the possibility

to treat high dimensional systems. As an application, a biochemical signal transduction

network is analyzed. The chosen system is of great importance, e.g., in medicine, since

a dysfunction in this process may lead to the development of cancer. It is therefore an

important component in order to understand the mechanisms of this disease.

The neutral rate of evolution in mammalian DNA is an important, but poorly understood,

component of genomic structure. It is accepted that this rate is not constant over a genome,

but varies across chromosomes and over time; characterization of this variation is thus invalu-

able in the study of genomic evolution, the identification of functional regions of the genome,

and the development of further analysis tools. In Chapter 6, a new technique for analyzing

the time-resolved pattern of the substitution rate variation across any mammalian genome

is proposed. This analysis allows to trace the evolution of the substitution rate pattern for

the last 150 million years, which also offers the possibility to study the conservation of the

rate pattern. An inter-species comparison of the substitution rate variation and its relation

to other genomic features sheds new light on the origin of this variation.





2
Testing for Phase Synchronization

2.1. Introduction

The field of nonlinear dynamics has brought various novel concepts, ideas, and techniques

in order to analyze, and characterize complex dynamical systems. Synchronization analysis

is one of these techniques which is designed to detect interactions between nonlinear self-

sustained oscillators. Especially in physics and the life sciences, synchronization analysis

has made its way into the daily routine in many investigations, e.g. [4, 5]. Following the

pioneering work of Huygens, synchronization has been observed in a variety of different

systems, ranging from processes exhibiting a limit cycle, via chaotic oscillators, to stochastic

processes. For these systems, different types of synchronization have been observed, such as

phase synchronization as weakest type of synchronization, lag synchronization, and complete

synchronization [6-9]. Thereby, phase synchronization analysis has gained particular interest

since it relies only on weak coupling between the oscillators. Different measures have been

proposed to quantify phase synchronization [10-12]. The most frequently used measure is a

measure based on entropy, the so called mean phase coherence which is based on circular

statistics [13]. In fact, both measures quantify the sharpness of peaks in the distribution

of the system’s phase differences. In the this Chapter, we concentrate on the mean phase

coherence.

The mean phase coherence is normalized such that it can only attain values in [0, 1]. A

value of 1 indicates the highest state of phase synchronization. In spite of the necessity for a

proper statistical assessment of the results obtained by phase synchronization analysis, hardly

any work takes the statistical properties of the mean phase coherence into account. Due to

the presence of noise on the data, either being observation noise or being dynamic noise,

extreme values of zero and one are hardly observable. For a reliable application of phase

synchronization analysis to empirical data, a statistical test is needed to decide whether the

analyzed systems are in a state of synchronization or not. To this end, the calculation of

5



6 Testing for Phase Synchronization Chapter 2

the distribution of the fluctuations superimposed to the mean phase coherence is desired for

this statistical inference problem. Furthermore, the derived distribution should be as pro-

cess unspecific as possible to achieve a high degree of applicability. Several approaches are

possible that might be able to infer phase synchronization. Such an approach, e.g., might be

realized to test for peaks in the distribution of the phase difference between both systems.

This might be realized by comparing the distribution of the phase difference with a uniform

distribution. The uniform distribution of the phase difference, however, is characteristic for

unsynchronized systems. Deviations from this uniform distribution are due to the presence of

phase synchronization. A statistical test to achieve this task might, e.g., be the Kolmogrov-

Smirnov test [14]. Another alternative might, e.g., a test suggested by [15] which is based

on the asymptotic distribution of the mean phase coherence. But for the latter two inference

methods the test statistics is derived under the assumption of independent samples. There-

fore, they are not expected to work properly in the case of dynamical systems or in other

words, the process class for these tests is too small for our purpose.

In the following a theoretical approach utilizing the asymptotic properties of the estimator

of the mean phase coherence is proposed. These theoretical considerations lead directly to a

derivation of the distribution of the mean phase coherence under the hypothesis that the data

generating processes itself are not phase synchronized. This distribution is necessary to build

a statistical test for phase synchronization. It then allows detection of phase synchronization

for a broad spectrum of data generating processes. Similarities to the test statistics presented

in [16] are discussed. Finally, the performance of the derived test is studied in an application

to stochastic synchronizing Rössler oscillators.

This Chapter is organized as follows. After the introduction of the mean phase coher-

ence in Section 2.2, the methodology of statistical hypothesis testing is briefly described

and alternative näıve tests that fail for our purposes are discussed in Section 2.3. Then the

asymptotic distribution of the mean phase coherence under the hypothesis of absent phase

synchronization is derived in Section 2.5. Due to the central limit theorem on functional

spaces, the rigorous derivation of this distribution is possible for a wide range of data gen-

erating processes. The process dependent parameters that emerge during the derivation can

be estimated from data in a numerical efficient way. This issue is addressed in Section 2.6,

followed by the application of the proposed significance level to a coupled system of Rössler

oscillators in Section 2.7.

2.2. Mean Phase Coherence

In order to detect phase synchronization between two coupled self-sustained oscillatory sys-

tems, a suitable definition of phase and amplitude of a real-valued observed signal is required.

This can be realized if the considered oscillations are characterized by a narrow frequency

band [17, 18]. Let x(t) be the real-valued signal satisfying the mentioned property. The

analytic signal is then given by

ψ(t) = x(t) + ix̂(t) = A(t)eiϕ(t) , (2.1)
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where A(t) is the amplitude and ϕ(t) the phase. The imaginary part of the analytic signal

can be obtained by the Hilbert transform [19]

x̂(s) = π−1 P.V.

∫
x(t)

s− t
dt (2.2)

of the signal, in which P.V. refers to Cauchy’s principle value. The phase ϕ(t) now yields a

suitable basis for the synchronization analysis.

Phase synchronization of two coupled, oscillatory systems occurs if the n : m phase locking

condition is satisfied [6]

|nϕx(t) −mϕy(t)| = |Φn,m| < const ,

where ϕx(t) and ϕy(t) denote the phases of the time series x(t) and y(t), respectively, and

n,m are suitable integers. Since the phase is defined between [−π;π] and in order to correct

for phase jumps in the estimated phase which are induced by the presence of dynamical or

observation noise, not the phase difference Φn,m itself but Ψn,m = Φn,m mod 2π is investi-

gated. A sharp peak in the distribution of Ψn,m can be associated with a synchronized state

between the oscillators. Here, a commonly used quantity, measuring the sharpness of the

distribution of Ψn,m is the mean phase coherence [13]

R2
n,m = E [cos(Φn,m)]2 + E [sin(Φn,m)]2 , (2.3)

where E [·] denotes the expectation value. The mean phase coherence is R2
n,m = 1 for a

constant phase difference between the two processes and R2
n,m = 0 for a uniformly distributed

phase difference in case of non-synchronized oscillators. It has been shown that this quantity

is considerably different from zero even in the case of weak coupling, which occurs in the case

of phase synchronization.

Let φi, i = 1, · · · , N be equidistantly sampled data of Ψn,m, where the time span between

the observations is ∆t. For a discrete set of data points xi an estimate of the Hilbert trans-

form, Eq. (2.2), is given by the following procedure: let F ,F−1 denote the discrete Fourier

transformation, and its reverse transformation. Moreover, θ(·) represents the Heaviside func-

tion, being zero for all negative arguments and one for positive arguments. The empirical

Hilbert transform can now be determined by calculating the Fourier transform of xi, trun-

cating the negative frequencies, and transforming twice the obtained process back into the

time domain. This procedure can be formulated mathematically by

ψi = F−1 {2 θ(ω) F{x}(ω)}i .

The above mentioned decomposition, Eq. (2.1), can be proceeded for ψi and yields the em-

pirical process ϕi for the phase of the signal. For sake of simplicity we suppress the subscript

n,m in the following. Assuming that underlying processes are ergodic it follows that the
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phase difference φi is also ergodic. An estimate of R2 in Eq. (2.3) is then given by

R̂2
N =

(

N−1
N∑

i=1

cos(φi)

)2

+

(

N−1
N∑

i=1

sin(φi)

)2

= N−2
N∑

i,j=1

(cos(φi) cos(φj) + sin(φi) sin(φj))

= N−2
N∑

i,j=1

cos(φi − φj) . (2.4)

In the following paragraph, the necessity and the procedure of statistical hypothesis testing is

described. Two näıve approaches are discussed, where it is shown that they only yield useful

results for small range of data generating processes.

2.3. Statistical Hypotheses Testing

The main scope of statistical hypotheses testing is to decide whether a hypothesis has to

be rejected or not on the basis of measured data. Typically, hypotheses are questions like:

Is the model consistent with the data or is there a difference of a certain quantity between

two groups of measurements? In our case, the hypothesis is devoted to the problem if phase

synchronization between two time series of oscillating systems is absent. To attack such

questions on a quantitative way a usually real-valued quantity has to be defined assigning

the N -dimensional vector of observations to a single number, where N denotes the size of

the sample. Formally, the measurements are represented by a family of random variables

(Xi)i=1,··· ,N on the same space Ω. The desired quantity is therefore given by a map t̂N with

the following property

t̂N : Ω × · · · × Ω
︸ ︷︷ ︸

N−times

→ D ⊂ R .
Since the space Ω is equipped with a probability measure P , the choice of t̂N is restricted by

the demand that t̂N has to be measurable. This slight restriction is necessary to interpret

the quantity t̂N itself as being a random variable on D. Here, the random variable t̂N is

the statistic of the inference problem. Based on such a statistic, the hypothesis we like to

address can be formulated in a probabilistic manner. For a given set A ⊂ D the so called

null hypothesis, denoted by H0, is that the expectation value E[t̂N ] is an element of set A.

Unfortunately, to decide whether the observed value of t̂N satisfies the null hypothesis H0 is

problematic. This is due to the probabilistic character of t̂N . Consider, e.g., that t̂N posses

a continuous distribution with mass on the whole set D. This is exactly the situation we are

confronted with when testing for phase synchronization. In that case a possible statistic is

the mean phase coherence t̂N = R̂2
N , Eq. (2.4), which can take every value in D = [0, 1]. This

leads to the situation that a rejection of the null hypothesis is not possible with certainty,

which is due to the fact that PH0

t̂N

(D ∩ [0, t]) 6= 1 for every observed value t of t̂N . Here, PH0

t̂N
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Figure 2.1: In this figure the characteristic quantities of a statistical test are illustrated. Here, the red curve

in (a) shows the distribution of the statistic t̂N for which the null hypothesis H0 is valid. Indicated by a shift

of the expectation value the blue curve represents the distribution of t̂N whereas the alternate hypothesis H1

is assumed to hold. The probability α to draw false positive conclusions from the test is shown by the red area

of the red curve. This probability or level of significance is determined by the left and right critical values. In

contrast, the blue area under the blue curve illustrates the probability β for making false negative conclusions

under the alternative H1. The right graph, (b), shows the power 1 − β with respect to some violation of H0.

If no violation of H0 is present the power coincides with the level of significance, displayed by the red dashed

line. Moreover, the steepness of the power curve for small violations constitutes to the sensitivity of the test.

Three exemplary power graphs of different sensitivity are shown by the red, black, and blue solid curves.

denotes the probability measure with respect to the statistic and under the assumption that

the null hypothesis H0 holds.

Providing a reliable and powerful method to decide whether to accept or to reject H0 on

the basis of empirical data, extreme values with considerably low probability are said to be

not compatible with the null hypothesis. Therefore, a threshold has to be chosen separating

the region for which the null hypothesis has to be rejected from the region where the null

hypothesis is accepted. Depending on the problem a threshold on either the left, the right or

both sides of the distribution of t̂N has to be selected for this purpose. In our case a one-sided

test is appropriate cutting off high values of R̂2
N , whereas the situation for a two-sided test

displayed in Fig. 2.1a. The threshold is called critical value. Leaving out the improbable

events leads to a non-vanishing probability that certain realizations are wrongly rejected.

This so called error of first kind, false negative rate or level of significance is visualized by

the red area in Fig. 2.1a, where the red curve represents the distribution of t̂N if H0 is valid.

For a two-sided test the level of significance α can be determined from PH0

t̂N

by

α = PH0

t̂N

(
(∞, tlcrit] ∪ [trcrit,∞)

)
,

where tlcrit, t
r
crit is the left and right critical value. In general, not the critical value but the
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error of first kind α is chosen in advance to set up the specificity of the test procedure. A

central problem of statistical hypothesis testing is therefore devoted to the determination of

the critical values for a given probability α. In the following, an approximation of the level

of significance is derived for the mean phase coherence. Note that this task only requires the

knowledge of the distribution of the statistic under the assumption that the null hypothesis

holds, PH0

t̂N

.

The term null hypothesis emphasizes that there also exists an alternative hypothesis.

This alternate hypothesis is denoted by H1 in the following. Clearly, the converse condition

E[t̂N ] /∈ A defines H1. Apart from the behavior of the test under the null hypothesis its

performance under the alternative hypothesis is also of practical importance. Here, the so

called error of second kind β is the central quantity used to characterize the performance of

the test under H1. The error of second kind is defined as being the probability that the null

hypothesis is accepted whereas it should have been rejected. Thus

β = PH1

t̂N

(
[tlcrit, t

r
crit]
)
, (2.5)

where PH1

t̂N

is now the distribution of the statistic under the alternative hypothesis. In

Fig. 2.1a, the blue curve exemplarily shows a distribution of t̂N under H1, visible by the

shift of the expectation value to one. Here, the blue area represents the error of second kind

given by Eq. (2.5). To incorporate both characterizations in one graph, the so called power

of the test is introduced in the following. With respect to the violation of the null hypothesis

the quantity 1−β is investigated for this purpose. The violation of the null hypothesis stated

above is a distance measuring the degree of the departure from H0. In case of the synchro-

nization analysis this is, e.g., the distance of the ”true” mean phase coherence from zero. The

power 1 − β is a probability and can therefore attain values in [0, 1]. Moreover, the power

curve is usually a monotone function with respect to the violation of H0, which should attain

the level of significance if the null hypothesis is not violated. Three typical power curves are

shown in Fig. 2.1b. As mentioned above the origin of each power curve is here the level of

significance which was chosen to be 5%. However, the curves differ from the speed they rush

up towards one with respect to the violation of H0. This behavior characterizes the sensitivity

of the test. For example, the red curve in Fig. 2.1b reaches values close to one for the lowest

violation of the hull hypothesis and is therefore the most sensitive test with respect to the

others. Instead, the black curve can be regarded as a test of intermediate sensitivity, whereas

the blue curve represents a test of low sensitivity. A usual demand for a test statistics is

that the sensitivity increases if the sample size N increases, since more information can be

extracted out of the data. But keeping the sample size fixed, the sensitivity of the test can

only be altered by its design.

In summary, a statistical test is characterized by the error of first kind if the null hypoth-

esis H0 holds and the power if the alternative hypothesis is valid. The first characteristic

quantity determines the specificity of the test which has to be fixed prior the test procedure

is applied. On the other hand, the second quantity is used to assess the sensitivity of the test.

However, the power depends only on the sample size and the design of the statistical test. A

graph visualizing both characteristics is the power diagram which will be used to assess the

simulation study in Sec. 2.7.
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2.4. Näıve Tests for Phase Synchronization

A first possible test procedure would be to check whether the empirical distribution of

the phase difference is compatible with a uniform distribution. To this end, the so called

Kolmogorov-Smirnov test [14] can be applied. The test statistics of the Kolmogorov-Smirnov

test is based on the L∞-distance between the (cumulative) empirical distribution function of

the phase difference Ψ and the distribution function of the uniform distribution on [0, 2π).

Thus,

dKS
N = sup

x∈[0,2π)

{

|F̂Ψ
N (x) − (2π)−1x|

}

is the desired test statistics, where F̂ϕ
N (x) = N−1

∑N
i=1 θ(x−Ψi) is the empirical distribution

function of Ψ and θ(·) is again the Heaviside function. If the data points Ψi are statistically

independent, then the asymptotic (N → ∞) distribution of dKS
N under H0 : dKS

N = 0 can be

derived analytically. Now, we show the performance the described method in case of absent

coupling between two stochastic Rössler oscillators [20]

ẋ1,2 = −ω1,2 y1,2 − z1,2 + σ η1,2

ẏ1,2 = ω1,2 x1,2 + a y1,2

ż1,2 = b+ (x1,2 − c) z1,2 ,

where the subscript 1 corresponds to system one and 2 represents system two. The influence of

the dynamic noise is modeled by using Gaussian distributed random variables η1,2 ∼ N (0, 1).

This leads to the a variance of σ2 for the noise term σ η1,2. The remaining parameters are

set to a = 0.15, b = 0.2, c = 10, ω1,2 = 1 ± 0.015, σ = 0.6, and sampling rate is chosen to

be 0.1. For the synchronization analysis only the x-components of the Rössler oscillators are

examined. According to Sec. 2.2, the phases are estimated using the Hilbert transformation.

The sample sizes are selected between 100 and 106 data points for each simulation. It turns

out that the fraction of rejections of the null hypothesis was 100% for all simulations using

the Kolmogorov-Smirnov test despite H0 was fulfilled. As second possible test procedure, a

strategy discussed in [16] can be considered. This method utilizes the asymptotic distribution

of the mean phase coherence which is given by

2 N R̂2
N ≈ χ2

2 ,

where χ2
2 denotes the χ2-distribution with two degrees of freedom. Again, in the derivation

of this result it is assumed that the phase difference is independent. Using the same system

and parameters as in the first case, the simulations yielded again 100% rejection of the null

hypothesis. Since in both cases the null hypothesis was at any time rejected by the tests even

though it was satisfied, the test procedures are not supposed to work. This is due to the

rather unrealistic assumption that the phase differences are statistically independent. If the

phase differences are statistically dependent, the rate at which the variance of R̂2
N approaches

zero is smaller than for a set of independent phase differences. Therefore, the false positive

rate converges to one for N → ∞. In following the distribution of the mean phase coherency

is derived whereas the dependence structure of the phase differences for dynamical processes

is explicitly implemented.
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2.5. The Distribution of R̂2
N under H0

Formulating the phase-difference φi at time ti = i∆t as an increment process φi = φi−1+∆φi,

such that under H0 the increments ∆φi are strictly stationary. This holds for all sampling

intervals ∆t. Now, consider φi as a stochastic process and let us assume that the increments

∆φi are representing an α-mixing process [21]. Precisely, let Fm
l = σ(φl, · · · , φm) denote the

smallest sigma-algebra such that all random variables φl, · · · , φm are measurable for some

0 ≤ l ≤ m. The process φi is said to be α-mixing if the mixing coefficient

α(k) = sup
l≥0

sup
{

P (A ∩B) − P (A)P (B) : A ∈ F l
0, B ∈ F∞

l+k

}

(2.6)

satisfies limk→∞ α(k) = 0, where P (·) denotes the probability measure. In other words, the

statistical dependencies are vanishing for infinitely distant events. Under this condition, it is

possible to derive the asymptotic distribution of R2
N in the absence of phase synchronization.

Moreover, in the following Chapter it is discussed that such a mixing condition is necessary

for the inference of phase synchronization on the basis of empirical data. Similar to the usual

central limit theorem, the phase increment process defined above converges to a Brownian

motion. To this end, an appropriate metric process space is needed, which is explored in the

following.

Assume that the process space is endowed with the Skorohod topology. The Skorohod

topology is defined by the metric d(·, ·) on the space D[0, 1] of cadlag functions on [0, 1]. A

cadlag function on [0, 1] is a real-valued function that fulfills

• lims↑s0
x(s) exists for every s0 ∈ (0, 1]

• lims↓s0
x(t) = x(s0) exists for every s0 ∈ (0, 1].

In general, we have to rescale the time t, i.e. s = t/tmax ∈ [0, 1]. Let Λ denote the class of

strictly increasing continuous mappings of [0, 1] onto itself [22, 23]. Then, the distance d(x, y)

is the infimum of those positive ǫ for which there exists an λ ∈ Λ with

sup
s∈[0,1]

{|λ(s) − s|} ≤ ǫ and

sup
s∈[0,1]

{|x(s) − y(λ(s))|} ≤ ǫ

for x(s), y(s) ∈ D[0, 1]. Then, the functional central limit theorem [24, 23] states that the

sufficiently rescaled sum of the centered increments converge weakly to Brownian motion on

[0, 1], i.e. there exist functions λn ∈ Λ such that

lim
n→∞

xn(λn(s)) = x(s) and

lim
n→∞

λn(s) = s

uniformly in s. Here, the sequence xn converges weakly to the Brownian motion.
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We can therefore replace the generally unknown evolution of φ by the following drift

diffusion process

dφ̃t = ω dt+
√
D dWt , (2.7)

where ω is the mean angular velocity of the phase difference, dWt is the increment of the

Brownian motion and D the diffusion constant. The phases φi can be approximated by

φi ≈ φ̃i∆t = φ̃t leading to the asymptotic distribution of R̂2
N under the null hypothesis H0.

The procedure of estimating the coefficients ω and D from empirical data is addressed in

Sec 2.6. Additionally, the initial distribution of φ0 = 0 with probability one can be assumed

without loss of generality, since an over-all phase cancels out calculating the mean phase

coherence. To determine the distribution R̂2
N under H0 the following random variables

XN = N−1
N∑

i=1

cos(φi) and YN = N−1
N∑

i=1

sin(φi) (2.8)

are considered. The solution of Eq. (2.7) is given by φi ∼ N (ωti, Dti), where N (µ, σ2) denotes

the Gaussian distribution with mean µ and variance σ2. Thus, for the phase model under

H0, Eq. (2.7), the expectation value of E[XN ], E[YN ] yields

E[XN ] = N−1
N∑

j=1

cos(ωtj) e
−D

2
tj and E[YN ] = N−1

N∑

j=1

sin(ωtj) e
−D

2
tj , (2.9)

where tj = j∆t. The latter expressions are due to following identity

1√
2πσ

∫
(
cos(x), sin(x)

)
e−

(x−µ)2

2σ2 dx =
(
cos(µ), sin(µ)

)
e−

σ2

2 . (2.10)

Expressing cos(ωtj) and sin(ωtj) by their polar representations and evaluating the geometric

sums
∑N

j=1(·)j in Eq. (2.9) leads to

E[XN ] =
1

N

(
f(t1) − f(tN ) + e−D∆t (f(tN−1) − 1)

(1 − e−D∆t/2)2

)

= O(N−1) and

E[YN ] =
1

N

(
g(t1) − g(tN ) + e−D∆t g(tN−1)

(1 − e−D∆t/2)2

)

= O(N−1)

with f(tj) = cos(ωtj) e
−D

2
tj and g(tj) = sin(ωtj) e

−D

2
tj . Especially the fact that E[XN ] =

O(N−1) and E[YN ] = O(N−1) is important for approximating the covariance matrix of the

random vector ZN = (XN , YN ).

The covariance matrix of ZN can be calculated using C = Cov(ZN ) = E[Z ′
NZN ] −

E[Z ′
N ]E[ZN ], where Z ′

N indicates the transposition of ZN . Since E[ZN ] = O(N−1), C can be
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approximated by its second moment with a remainder of order N−2. Thus, C = Cov(ZN ) =

E[Z ′
NZN ] +O(N−2) and we obtain

C = N−2
N∑

i,j=1





E[cos(φi) cos(φj)] E[cos(φi) sin(φj)]

E[cos(φi) sin(φj)] E[sin(φi) sin(φj)]



+O(N−2) . (2.11)

Expansion of the diagonal entries of the covariance matrix yields that the corresponding

expectation values can be represented by 1
2

(
E[cos(φi − φj)] ± E[cos(φi + φj)]

)
. The sum

in Eq. (2.11) contains the case where i = j. This occurs for N combinations. Since the

summand E[cos(φi − φj)] = 1 if i = j, it dominates the sum in C for the diagonal entries,

from which follows that C = O(N−1) and therefore N · C → C̃ 6= 0. Hence, it is indeed

guaranteed that Eq. (2.11) can be approximated by neglecting the term of order O(N−2).

Since cos(φi) and sin(φi) are strongly mixing sequences, the central limit theorem for

mixing processes [25] holds and, therefore,
√
N ·ZN converges in distribution to the bivariate

normal distribution

√
N · ZN

d→ N (0, C̃) as N → ∞ . (2.12)

Furthermore, C is positive definite and symmetric, we can decompose C = QDQ′, where Q

is orthogonal and D is diagonal. Since D is diagonal and positive, D
1

2 is well defined by the

square root of the the diagonal entries. Setting

Z̃ND
1

2 Q′ = ZN (2.13)

it follows that Z̃N = (X̃N , ỸN ) ∼ N (0, 1) for N → ∞. This is due to the following

assertions: the positive definiteness guarantees that the inverse (D
1

2 Q′)−1 exists. Hence,

Z̃N = (D
1

2 Q′)−1ZN and by Eq. (2.12), E[Z̃N ] → 0 for N → ∞. Moreover, E[Z̃ ′
N Z̃N ] =

E[Z ′
N (QDQ′)−1ZN ] = E[Z ′

NC−1ZN ] → 1. Since the first and the second moment coincides

with the moments of the standard normal distribution and the space of Gaussian distributed

random variables is closed with respect to linear transforms, we can state from Eq. (2.12) that

indeed Z̃N
d→ N (0, 1). According to Eq. (2.4), and by the definition of ZN we can represent

the estimator of the mean phase coherency by R̂2
N = ZNZ

′
N = ||ZN ||2. Inserting Eq. (2.13)

in the previous expression, we obtain R̂2
N = Z̃NDZ̃ ′

N . This leads to the equivalent expression

R̂2
N = λ1X̃

2 + λ2Ỹ
2 ,

where λ1, λ2 are the eigenvalues of C, given by

λ1/2 =
tr C

2
±
√

(tr C)2

4
− det C . (2.14)

Consequently, the eigenvalues λ1, λ2 determine the asymptotic distribution of the mean phase

coherence under H0. The distribution of R̂2
N can therefore be approximated by a superpo-

sition of two independent χ2-distributions with one degree of freedom, χ2
1, which is the
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distribution for the square of a normally distributed random variable. Since λ1/2 > 0, we can

further estimate an upper limit of this distribution by

R̂2
N ≈ tr C · χ2

1 . (2.15)

Critical values derived from the upper limit are therefore too large for a given level of sig-

nificance α. In consequence, the true error of first kind, as discussed in Sec. 2.3, is smaller

than the predefined. This leads to a test which is known as being conservative. For such

tests, a certain proportion of significant results are overseen, which is tolerable in contrast

to the opposite behavior where too much effects are detected. In Sec. (2.7) we demonstrate

that the derived test statistics, however, still has enough power for discriminating the phase

synchronized state from the unsynchronized state. Furthermore note, that for independent

realizations with λ1 = λ2 the distribution yields

R̂2
N ≈ χ2

2

2N
, (2.16)

which is exact the distribution suggested in [16].

To obtain the asymptotic distribution in the general case, e.g., for non-independent but

mixing phase differences, the trace of the covariance matrix given by Eq. (2.11)

tr C = N−2
N∑

i,j=1

(
E[cos(φi) cos(φj)] + E[sin(φi) sin(φj)]

)

= N−2
N∑

i,j=1

E[cos(φi − φj)] (2.17)

has to be calculated to estimate the asymptotic properties of R̂2
N under H0. For the diffusion

process, Eq. (2.7), the distribution of the phase difference φi−φj is normally distributed with

mean ω|ti − tj | and variance D|ti − tj |. Due to Eq. (2.10) we therefore obtain,

tr C = N−2
N∑

i,j=1

e−
D

2
|ti−tj | cos(ω|ti − tj |) =

1

N
+

2

N

N−1∑

s=1

(

1 − s

N

)

e−
D

2
ts cos(ωts) .

Abbreviating ξ = e−
D

2
∆t+iω∆t and f(tj) = e−

D

2
tj cos(ωtj), we have

tr C = N−1

(
1

2
+ ξ

1 − ξN−1

1 − ξ
− ξ

1 − ξN+1

N (1 − ξ)2
+

ξN

1 − ξ

)

+ c.c.

= N−1

(

1 + 2
f(t1) + f(tN ) − e−D∆t

(1 − e−D∆t/2)2

)

+O(N−2) ,

where c.c. is referred to as the complex conjugation of the previous expression. Therefore the

distribution of estimated mean phase coherence assuming that the null hypothesis holds can

be approximated by

R̂2
N ∼ N−1

(

1 + 2
f(t1) + f(tN ) − e−D∆t

(1 − e−D∆t/2)2

)

χ2
1 . (2.18)
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We have to keep in mind that this approximation is only accurate for a large sample size N .

To obtain a sufficient approximation of the distribution of R̂2
N under H0, the mean angular

velocity ω and the diffusion constant D have to be reliably estimated. This task is subject

of the following section.

2.6. The Estimation of ω and D

The estimation of ω can be performed by identification of the linear trend ωti for i = 1, · · · , N
in φi obtained by linear regression, such that

ω̂ =

∑N
i=1 ti φi
∑N

i=1 t
2
i

, (2.19)

where again ti = i∆t. Only stationarity was used here, whereas for the estimation of the

diffusion constant D the functional central limit theorem has to be taken into account. Since

D is related to the variance of the phase increments ∆φi = φi − φi−1,

D = lim
N→∞

1

∆tN
Var

(
N∑

i=1

∆φi

)

= lim
N→∞

1

∆t

N−1∑

k=−N+1

(

1 − k

N

)

γ(k)

=
1

∆t

∞∑

k=−∞

γ(k) , (2.20)

where

γ(k) = E
[
(∆φi − E[∆φi])(∆φi+k − E[∆φi+k])

]

is the auto-covariance function of ∆φi. Due to the stationarity of the process, the auto-

correlation function is well defined, it therefore does not depend on i. The auto-covariance

function is a substantial part of Eq. (2.20), such that the correlations of the phase increments

cannot be neglected in the estimation.

To deal with the problem of correlated phase increments, non-overlapping blocks are used

out of the phase increments in a manner to achieve approximately independent blocks. This

approach is similar to the one used in block bootstrap [26, 27]. Finding such non-overlapping

blocks is possible if the particular time series is strongly mixing which is one of the central

requirements of the functional central limit theorem. It is further assumed, without loss

of generality, that for a given block-length l the number of blocks b is an integer value.

Otherwise the time series of the increments can sufficiently be truncated. We define the total

phase increment of each block by

δj =
l∑

i=1

∆φ(j−1)l+i j = 1, · · · , b =
N

l
. (2.21)
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The empirical variance of δj divided by l∆t therefore yields an appropriate estimate for D

and is given by

D̂ =
1

l∆t
b−1

b∑

j=1

(δj − l ω̂∆t)2 . (2.22)

Here, the free parameter of the block-length l has to be selected. If, e.g., the block-length was

too small, the estimate of D could be strongly biased due to the correlations. On the other

hand, if l is too large D̂ itself shows a rather high variance. The optimal block-length should

balance both effects. This can be achieved if the mean-squared-error MSE = Variance+Bias2

is minimized with respect to the block-length l, where the bias term corresponds to E[D̂]−D.

To apply the selection method for determining the block-length l an approximation of the

mean-squared-error is derived. To this end, Eq. (2.22) is rearranged. It turns out that the

empirical auto-covariance function γ̂j of block j is the central quantity determining D̂. Since

δj =
∑l

i=1 ∆φ(j−1)l+i, Eq. (2.22) is equivalent to

D̂ =
1

l∆t
b−1

b∑

j=1

l∑

r,m=1

(∆φ(j−1)l+r − ω̂∆t) (∆φ(j−1)l+m − ω̂∆t)

=
1

l∆t
b−1

b∑

j=1

l−1∑

k=−l+1

l∑

m=1

(∆φ(j−1)l+k+m − ω̂∆t) (∆φ(j−1)l+m − ω̂∆t)

=
1

∆t
b−1

b∑

j=1

l−1∑

k=−l+1

γ̂j(k) , (2.23)

where the index r was replaced by k = r−m. Thus, the empirical inter-block auto-covariance

function of the phase increments is defined by

γ̂j(k) = l−1
l∑

m=1

(∆φ(j−1)l+k+m − ω̂∆t) (∆φ(j−1)l+m − ω̂∆t) .

Due to the the stationarity of the phase increments, the random variable γ̂j(k) does not alter

between the blocks j. Moreover, γ̂j(k) is unbiased such that both properties are leading to

E[γ̂j(k)] = γ(k). Making use of the latter observation and by using the value of D as derived

in Eq. (2.20), the bias of D̂ can be approximated by

E[D̂] −D =
1

∆t
b−1

b∑

j=1

l−1∑

k=−l+1

E[γ̂j(k)] −D =
1

∆t
b−1

b∑

j=1

l−1∑

k=−l+1

(

1 − |k|
l

)

γ(k) −D

≈ 1

∆t

∞∑

k=−∞

(

1 − |k|
l

)

γ(k) −D = − 1

l ∆t

∞∑

k=−∞

|k|γ(k) , (2.24)

where contributions of the auto-covariance function for values |k| ≥ l are neglected. This is

possible if the block-length l is close to the optimal. The variance of D̂ can be treated in a
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similar fashion, it reads

Var(D̂) =

(
1

∆t

)2

b−2 Var





b∑

j=1

l−1∑

k=−l+1

γ̂j(k)



 ≈
(

1

∆t

)2

b−1 Var

(
∞∑

k=−∞

γ̂(k)

)

. (2.25)

Here, the index j which represents the block for which the empirical auto-covariance function

is calculated is dropped. This is again due to the approximation that contributions beyond

the block-size are negligible small if l is close to the optimum. In Eq. (2.25), the last term

deserves further investigation. From spectral analysis it is known that the variance of the

sum over the empirical auto-covariance is asymptotically given by

Var

(
∞∑

k=−∞

γ̂(k)

)

= 2

(
∞∑

k=−∞

γ(k)

)2

, (2.26)

as shown e.g. in [28, 29]. Substituting b = N/l and by combining Eqs. (2.24), (2.25), (2.26)

finally yields the desired approximation of the mean-square-error

MSE ≈ (∆t)−2

(

l−2C1 +
2l

N
C2

)

, (2.27)

where

C1 =

(
∞∑

k=−∞

|k| γ(k)
)2

, and C2 =

(
∞∑

k=−∞

γ(k)

)2

.

The optimal block-length is given by the minimum of Eq. (2.27), thus lopt = (N C1/C2)
1

3 .

Certainly, both constants C1 and C2 are unknown in the first place, moreover if C2 was

known the diffusion constant could be calculated using Eq. (2.20) directly. Instead, rough

estimates of these constants are used to determine an almost optimal block-length, whereas

the outcome of Eq. (2.20) is directly linked to the estimate of C2 and has to be quite accurate

instead. Under the assumption that the auto-covariance function decays exponentially, such

a rough estimate is given by the following scheme [27]:

1. Estimate the auto-correlation function of the increments ∆φi for k ≪ N by

γ̂(k) = (N − k)−1
N−k∑

i=1

(∆φi − ∆tω̂) (∆φi+k − ∆tω̂) .

2. Fit ϕ(k) = ϕk to the envelope of the auto-correlation function.

3. Compute the estimate of the optimal block-length l̂ by

l̂ = (4 N)1/3

(
ϕ

1 − ϕ
+

ϕ2

(1 − ϕ)2

)2/3 (

1 + 2
ϕ

1 − ϕ

)−2/3

.

The statistical properties of the mean phase coherence have been derived, where the

mean angular velocity and the diffusion coefficient can reliably be estimated. An application

to empirical data is therefore feasible. This is demonstrated in the following simulation study.
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2.7. Simulation Study

To assess the performance of the proposed test, a system of two coupled stochastic Rössler

oscillators [20]

ẋ1,2 = −ω1,2 y1,2 − z1,2 + ǫ (x2,1 − x1,2) + σ η1,2

ẏ1,2 = ω1,2 x1,2 + a y1,2 (2.28)

ż1,2 = b+ (x1,2 − c) z1,2

is investigated, where the two-in-one notation similar to the one in Sec. 2.3 is used. Again,

the dynamic noise is modeled by Gaussian distributed random variables η1,2 ∼ N (0, 1) thus

leading to the variance σ2 of the noise term σ η1,2. In addition, the same parameter values

a = 0.15, b = 0.2, c = 10, and ω1,2 = 1 ± 0.015 as in Sec. 2.3 are used. Furthermore, the

same sampling rate of 0.1 is chosen. For the synchronization analysis only the x-components

of the Rössler oscillators are again examined.

The coupling strength between the two oscillators is modeled by the parameter ǫ. We

varied this value, the noise σ η1,2, and length of the sample N for each Rössler oscillator to

quantify the coverage as well as the power of the proposed significance level. The coverage

measures the number of false positive conclusions in the absence of phase synchronization

and has to be controlled, i.e., there should be not more than α-false positive conclusions for

an α-significance level as described in Sec. 2.3. The critical value for the α-significance level

can be derived from Eq. (2.15) by

Rα
N,crit = tr C · χ2

1, α , (2.29)

here χ2
1,α denotes the α-quantile of the χ2-distribution with one degree of freedom. Recall that

the power is the probability to rejected the null-hypothesis H0 correctly for a given violation

of H0. In the following, 100 realizations for every parameter combination is simulated to

determine power and coverage of the proposed significance level.

The results are shown in Fig. 2.2. Here, the amount of data N is either chosen to be

N = 8192 for the top row, or N = 16384 for the bottom row. Subsequent columns are

reflecting different noise levels σ. These are ranging between σ = 0.2 and σ = 0.8. The

coupling strength ǫ is varied for each parameter combination in the range from ǫ = 0 to

ǫ = 0.06. Note that the horizontal line in each graph corresponds to a level of significance

of 5%. First, we would like to emphasize that for absence of coupling between the Rössler

oscillators the coverage is equals or below the 5%-significance level. From this behavior we can

conclude that the critical value for the mean phase coherence prevents erroneous conclusions

in the case of absent coupling and, moreover, approves the expected conservative behavior

which is discussed in Sec. 2.5. Second, for high coupling strengths, a sufficiently large noise

strength, and enough data the power reaches values of 100%, Figs. 2.2c-h. The steepness

of several power curves especially for a sample size of N = 16384, emphasizes the good

performance of the proposed test.

A more detailed examination of the power curves yields some interesting properties. To

simplify our statements, let us focus on non-zero coupling strengths for the following discus-
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Figure 2.2: Power of the proposed significance level in dependence on data length and noise level. The first

row shows the results for the sample size of N = 8192 and second row displays the results for N = 16384.

Different noise levels σ are used for each subsequent column. The red line indicates the 5% significance level.

Blue lines are showing the power of the proposed test versus the coupling strength ǫ. The black line in (a),

and (b)indicate the fraction of critical values below one.

sion. In general, the performance of the test increases while the amount of data increases.

This behavior is intuitively expected since a decision which is based on a large amount of

data is more reliable than if only a few data points are taken into account. Therefore, the

sensitivity of the test increases with the data size. The influence of the noise intensity is

that it alters the rate of mixing of the Rössler systems. An increase of the noise strength

leads to a higher phase diffusion, such that more approximately independent data points are

available for the test. The amount of data is effectively higher in a manner that less data

are used for achieving the same accuracy. If small sample sizes are considered, effects due

to the rate of mixing are even more illustrative. A higher noise intensity can increases the

performance test, as shown below. Note that the power in Fig. 2.2a starts decaying for a cou-

pling strengths larger than 0.025. This is caused by the occurrence of critical values Rα
N,crit

in Eq. (2.29) above one, thereby preventing the detection of significant results. This effect

emerges in the simulations shown in Fig 2.2a, and b. The black line shows the fraction of

critical values that are below one. For the cases where the power decreases, the critical value

is to a certain extent close to or higher than one. Equation (2.29) enables us to understand of

this phenomenon. The χ2-distribution multiplied by the trace of matrix C is not bounded by

one as the mean phase coherence itself. Especially for low noise strengths and small sample

sizes this phenomenon may arise. Increasing the noise yields that the critical value is smaller

than one, such that the derived statistics to becomes applicable, Fig. 2.2c, and d. Once a

particular noise value is exceeded, here σ = 0.6, the power does not decrease any more for the

considered range of ǫ. Alternatively the asymptotic behavior can also be achieved, when the

number of data points is enlarged. This is revealed by the graphs in the second row. Here,

even for small coupling strengths, no critical value below one is observed and the power curve

increases monotonous with ǫ, Figs. 2.2e-h.
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Additionally, for higher coupling strengths than used in this simulation study, it might

happen that the derived approximation is not in its asymptotics. Then, a critical value

higher than one would be observed preventing any conclusions about a coupling between the

oscillators. Whenever a critical value of one or a critical value higher than one is obtained,

further investigations are necessary as to which extent this belongs to a true result, a finite

size effect or a violation of the assumptions. In this sense the significance level prevents

false positive conclusions as it indicates when its assumptions are not fulfilled. Moreover, the

length of the necessary segments to estimate the diffusion coefficient is an indicator whether

or not the process is sufficiently mixing. If the length of the segments is too large, one should

be cautious when drawing conclusions. Furthermore, the proposed significance level is not

capable of distinguishing coupling between oscillators and for instance a signal propagation.

One has to ensure in the first place, that whether one is in the regime of coupled synchronizing

oscillators or not. This problem is common in time series research and there are suggestions

how to distinguish synchronizing oscillators from, e.g., signal propagation [30].

2.8. Conclusion

The distribution of the test statistics is derived for the mean phase coherence that leads

to a critical value for a corresponding significance level that allows to test for a non-zero

synchronization value. The main mathematical assumption which is needed to derive this

distribution is the strong mixing condition, Eq. 2.6. However, in the following Chapter it is

discussed that this assumption is almost the minimal requirement in order to avoid spurious

results. The only possible relaxation of the mixing assumption is that weak mixing might

be considered to be able to estimate the mean phase coherence R̂N reliably. Here, weak

mixing refers to the decay of the auto-correlation function rather than the entire statistical

dependency structure. The performance of the proposed test has been demonstrated in

a simulation study based on coupled stochastic Rössler oscillators. The coverage of the

significance level is conservative. Moreover, the level of significance is characterized by a

steep increase in power. One major advantage of the proposed significance level lies in the

fact that the suggested procedure provides information about its applicability to the problem

at hand. If the segment length necessary for the estimation of the diffusion term is too large

compared to the time series length, indicating that the system is either non-mixing or that

the mixing is too slow, the proposed significance level should not be used which is indicated

by the proposed procedure. In contrast to the näıve approaches, this prevents false positive

conclusions about the synchronization in cases, where these conclusions cannot be inferred. In

summary, the proposed significance level works well for a large variety of coupling strengths,

noise variances, and sample sizes. It provides, thus, a powerful test for the presence of phase

synchrony.





3
Mixing Properties of the R össler

System and its Consequences

3.1. Introduction

In the previous Chapter, the distribution of the mean phase coherence was derived under

the hypothesis of absent phase synchronization. The central assumption on the generating

processes is the mixing property limk→∞ α(k) = 0, where α(k) is defined in Eq. (2.6), p. 12.

However, this assumption is not only required to derive the statistical properties of the

estimator for the mean phase coherence R̂N , but is also necessary to avoid spurious results.

This is due to the fact, that a phase coherent behavior of two independent systems can be

observed, since the phase of one oscillator is not drifting away with respect to the other.

Such a misleading behavior can, e.g., happen for systems exhibiting a limit circle. We can

therefore conclude that beside ergodicity, mixing is the most important stochastic feature of

chaotic systems which is essential for synchronization analysis on the basis of empirical data.

A second method to detect couplings of two systems is the coherency analysis. Again, the

mixing of the observed systems is essential, as shown below. Here, it should be noted that

some kind of mixing is also essential for statistical mechanics and thermodynamics. This

is due to the demand that interactions between subsystems should not be too strong and

negligible on a macroscopic scale such that the entropy is an extensive quantity [31]. A

further property of mixing is that it implies the decay of the auto-covariance function, which

is of great importance in the following.

For deterministic dynamical systems the rather abstract definition of the mixing property

given in Chapter 2 can be reformulated. To do so, let Mt(x) be the time evolution of a certain

point x in phase space by an ergodic dynamic system, thus x = Mt=0(x). The invariant

measure is denoted by µ and exists by the demand that the system has to be ergodic. Mixing

23
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of such a dynamical system is then satisfied if for all µ-measurable sets A,B the condition

lim
t→∞

µ
(
A ∩M−1

t (B)
)

= µ(A) µ(B) (3.1)

is valid [32]. The set M−1
t (B) in Eq. (3.1) refers to the compact notation for the inverse

image of Mt, M
−1
t (B) = {x : Mt(x) ∈ B}. Using the definition above, the system of our

interest, namely the Rössler system [20]:

dx/dt = −y − z

dy/dt = x+ ay

dz/dt = b+ (x− c)z ,

shows for a specific set of the parameters a = b = 0.2, c = 6.3 a behavior which could be

explained by a defect of mixing. An alternative explanation would be the presence of finite

size effects. This behavior vanishes if dynamical noise of a sufficient strength is included as it

is done in Chapter 2. In this Chapter, however, the noise-free case is studied to discriminate

a loss of mixing from finite size effects.

A possible loss of mixing is connected to the non-hyperbolicity of the system, since for hy-

perbolic or Axiom A systems mixing is always satisfied. Furthermore, the mixing coefficient,

describing the statistical dependency of time lagged events or the correlations of sufficiently

smooth observables is decaying exponentially and the rate of this decay is related to the

positive Lyapunov exponents for these systems. The key point of these statements is the

qualitative knowledge of the spectrum of the time evolution operator for the probability den-

sity of the system’s states Pt, the so called Frobenius-Perron operator (FPO), [32]. Note that

this density is chosen to be absolutely continuous with respect to some invariant measure. It

can be shown that the resolvent function of the FPO: R(z) = (1z − Pt)
−1 can be meromor-

phically extended onto the whole complex space [33-35]. The poles of the resolvent function

are lying in the interior of the unit circle except for the simple pole at one, corresponding

to the invariant measure. Since poles of the resolvent function are the point spectrum of

the FPO and by using Pn∆t = Pn
∆t, the exponential decay of correlations for a sufficiently

smooth real-valued observables can be shown. Moreover, eigenvalues close to the unit circle

are generating sharp peaks of approximately Lorentzian shape in the power spectrum. This

consequence is in perfect accordance with the more heuristic derivation of peak shapes of

chaotic oscillators given in [36]. The corresponding eigenvalues are called Ruelle-Pollicott

resonances.

In case of non-hyperbolic systems the discussed properties of the resolvent function need

not be fulfilled. Generally, the Lyapunov exponents are not related to the rate of mixing, even

if the process of interest satisfies condition (3.1). Instead, the spectrum of the FPO may have

a cluster point on the unit circle which leads to a loss of mixing. Non-rigorous methods such as

calculating the spectrum of the FPO in a finite dimensional approximation and performing

the limit of infinite dimension have been applied, e.g., in [37, 38]. The comparison of the

analytically derived results are in good accordance with simulations, even though there is

no rigorous justification of this method. However, such a procedure is not feasible for the

Rössler system, since the FPO Pt can only be approximated numerically and thus the limit
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of infinite dimension is not possible. If the last step is omitted, the calculated eigenvalues

and eigenfunctions would depend on the chosen set of basis functions. Inconsistency would

therefore be the consequence of such a procedure. It is therefore not likely to approach the

question of mixing of the Rössler system on the basis of the FPO.

In the following, it turns out that the crucial point relating to the mixing property of the

Rössler system is the phase dynamics in the x-y plane. Before analyzing the phase dynamics

in detail, consequences resulting from the absence of mixing are reviewed and empirical

results are given for the power spectrum, and cross-spectral analysis in Sec. 3.2, as well as

synchronization analysis in Sec. 3.3. A detailed analysis of the phase dynamics is then given

in Sec. 3.4.

3.2. Spectral, Cross-Spectral Analysis and Mixing

In this section, the relation of the mixing property to the estimation of the power spectrum

and the cross spectrum is examined. From the knowledge of the FPO the power spectrum of

the process can be obtained. Moreover, the eigenvalue spectrum of the FPO determines the

power spectrum of dynamical systems. To demonstrate this statement, let f, g ∈ L2 be real

valued observables satisfying

lim
n→∞

Pn
∆tf = lim

n→∞
Pn

∆tg = 0 , (3.2)

which is equivalent to that both f and g are having an average of zero on the attractor. The

dynamical system is assumed to be ergodic, therefore the unique invariant measure µ exists

and its density corresponds to the non-degenerate eigenvalue 1 of the FPO. Due to Eq. (3.2),

the observables f, g are orthogonal to the eigenspace, in which the invariant density lies. The

correlation function is then

Cf,g(n) =

∫

g(x)Pn
∆tf(x) µ(dx) .

For some complex values z ∈ C satisfying |z| > 1, the discrete Laplace transformation of the

latter correlation function, given by

C̃f,g(z) =

∞∑

n=0

Cf,g(n) z−n =

∞∑

n=0

∫

g(x) z−n Pn
∆tf(x) µ(dx) , (3.3)

can be rewritten in terms of the resolvent function R(z) of the FPO and yields

C̃f,g(z) =

∫

g(x) zR(z) f(x) µ(dx) . (3.4)

The step from Eq. (3.3) to Eq. (3.4) needs some mathematical justification. First, observe

that the sum and the integral in Eq. (3.3) can be exchanged. This is due to the prop-

erty of the FBO referred to as Markov operator. A Markov operator P satisfies: Pf ≥ 0

for every positive function f ∈ L2 and ||P || ≤ 1, where || · || refers to the usual operator
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norm ||P || = sup{f∈L2,||f ||=1} ||Pf ||. It follows that, ||Pn
∆tf || ≤ ||P ||n||f || ≤ ||f || < ∞

and hence there exists a function f̃ ∈ L2 which dominates Pn
∆tf . The partial sum of

Eq. (3.3),
∑N

n=0

∫
g(x)Pn

∆tf(x) z−n µ(dx), allows the exchange of integration and sum-

mation since it is a finite sum. Moreover,
∑N

n=0 g(x)P
n
∆tf(x) |z|−n can be dominated by

g(x)f̃(x) (1 − |z|−1)−1 ∈ L2 because |z| > 1. Now, the Lebesgue dominated convergence

theorem guarantees the interchangeability of summation and integration in Eq. (3.3). Recall

that resolvent function is given by R(z) = (1z−P∆t)
−1. And we can therefore represent zR(z)

in Eq. (3.4) by the Neumann-series: zR(z) = (1−P∆t/z)
−1 =

∑∞
n z−n Pn

∆t, which is possible

since lim supn→∞ ||(P∆t/z)
n|| 1

n ≤ |z|−1 < 1. Exactly the expression zR(z) =
∑∞

n z−n Pn
∆t

occurs in Eq. (3.3) if summation and integration have been exchanged, thus leading to

Eq. (3.4). Suppose now that f can be decomposed into eigenfunctions fi of the FPO:

f(x) =
∑∞

i=1 aifi(x). The eigenvalues of fi are denoted by zi and are satisfying |zi| ≤ 1

again since P∆t is a Markov operator. Eq. (3.4) then yields

C̃f,g(z) =
∞∑

i=1

aiz

z − zi

∫

gfi dµ . (3.5)

If all eigenvalues zi are compactly contained in the unit circle, Eq. (3.5) can be homomor-

phically extended onto the unit circle by similar manipulations used above. Thus, C̃f,g(z) is

defined for z = eiω∆t and yields S(ω) = C̃f,g
(
eiω∆t

)
, which is the one-sided Fourier transform

of the correlation function or the power spectrum. The power spectrum is usually defined

by the two-sided Fourier transformation but in case of non-invertible dynamics such a power

spectrum would not be defined. Therefore, the general structure of such a power spectrum

is given by the smooth function

S(ω) =

∞∑

j=1

γj e
iω∆t

eiω∆t − zj
,

where eigenvalues close to the unit circle are able to produce resonances of Lorentzian shape.

Such a specific distribution of the eigenvalues corresponds to a dynamical system equipped

with the mixing property.

In case of the absence of mixing, in which the eigenvalues zi are having a cluster point

on the unit circle, the transition from |z| > 1 to |z| = 1 in Eq. (3.5) is not possible. But

due to the assumed ergodicity the correlation function exists and thus the Wiener-Khintchine

theorem guarantees the existence of a spectral distribution function [29]. Such a distribution

function is in general not represented by a smooth density, instead delta-distributions are

often present.

For empirical time series of length N , the power spectrum can be estimated by calculating

the discrete Fourier transform of the observed time series xi, i = 1, · · · , N . The squared norm

of the Fourier transform then defines the periodogram

Per(ω) = |f(ω)|2 and f(ω) =
1√
N

N∑

k=1

xk e
−iωk . (3.6)
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Figure 3.1: (a) Power spectrum of the x-component of the Rössler system at the vicinity of the its main oscil-

lating frequency. (b) Coherency of two independent, identical Rössler systems. The coherency at frequencies

of approximately 0.17 and its multiplies are lying above the 5% level of significance (dashed line).

If the power spectrum is a smooth function in the frequency domain and the time series mixes

sufficiently, the periodogram Per(ω) is χ2-distributed

Per(ω) ∼ S(ω)χ2
2/2 ω 6= 0 and π ,

which is due to the central limit theorem [39, 28, 14]. Increasing N increases the frequency

resolution but does not reduce the variance of the periodogram. In order to obtain a con-

sistent estimation of the power spectrum, in which the variance vanishes if N → ∞, the

periodogram has to be smoothed [28, 29]. If, e.g., the spectral density contains a delta-

distribution the smoothing procedure is no longer consistent. Due to the orthogonality of the

Fourier transform, the growth of height with respect to the amount of data for this compo-

nent is proportional to N . The x-component of the discussed Rössler system is showing sharp

peaks in the power spectrum, Fig. 3.1a. By increasing the amount of data N , the peak seems

to grow in height but the growth rate cannot be determined because of finite size effects.

This is mainly due to the uncertainty of the peak location and truncation effects, also known

as tapering effects.

The absence of mixing not only leads to severe problems for estimating the univariate

power spectrum, but also the estimation of the bivariate cross-spectrum is problematic if
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the mixing condition is not fulfilled for the underlying processes. Cross-spectral analysis

is an analysis technique for detecting a linear relationship between two processes x(t) and

y(t). The processes x, y are assumed to have zero mean and unit variance, if not a linear

transformation has to be applied such that the processes are satisfying these requirements.

The cross-spectrum is then defined by the Fourier transformation of the cross-correlation

function:

CCF(τ) = E[x(t)y(t− τ)]

CCF(ω) =
1

2π

∫

CCF(τ) exp(−iωτ) dτ ,

normalized by the product of square root of the univariate power spectra Sx(ω), Sy(ω):

CSxy(ω) =
CCF(ω)

√
Sx(ω) Sy(ω)

.

According to the previous Chapter E[·] denotes the expectation value. This function is in

general complex and can therefore be decomposed into the phase spectrum Φxy(ω) and the

coherency Cohxy(ω), such that

CSxy(ω) = Cohxy(ω)eiΦxy(ω) .

Due to the normalization of the cross-spectrum the coherency is ranging from Cohxy(ω) = 0,

no linear relationship between x and y at ω, to Cohxy(ω) = 1, perfect linear relationship.

Whereas the interpretation of the phase spectrum Φxy(ω) is more difficult, see e.g. [40].

The estimation of the cross-spectrum is analogous to the estimation of the power spectrum.

Furthermore, an asymptotic level of significance under the hypothesis Cohxy(ω) = 0 can be

derived

s =

√

1 − α
2

ν−2 , (3.7)

where ν is the number of equivalent degrees of freedom depending on the smoothing procedure

of the spectra [39, 29, 28, 40-42].

Mixing of the processes is again essential for cross-spectral analysis and for deriving

Eq. (3.7). In case of two independent processes x and y we obviously have Cohxy = 0.

According to [28, 39], the estimation of this quantity is possible if the processes can be ap-

proximated by the linear sequences

x(t) =
∞∑

i=0

C1(i) z1(t− i) and y(t) =
∞∑

i=0

C2(i) z2(t− i) ,

where zi(t) is an independent and identically distributed sequence of random variables having

zero mean and a finite fourth moment. Moreover, the coefficients must satisfy

∞∑

j=0

|Ci(j)| j1/2 <∞ , i = 1, 2 . (3.8)
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Necessarily, Ci(j) → 0 if j → ∞ and hence the autocorrelation of x and y must decay, which

is valid if both processes are mixing. Besides the pure estimation of the cross-spectrum,

statistical inference such as Eq. (3.7) is based on the asymptotical normality of sums of state

variables. Here, mixing is again a central requirement, see e.g. [25].

Now, 5 × 105 data points of the chaotic attractor of two independent, identical Rössler

systems are simulated. For this simulation and the following simulations, the Rössler system

is integrated by a Runge-Kutta scheme of fourth order with step size control keeping the

numerical error below ε = 10−12 [14]. The sampling rate of both time series was chosen to

be ∆t = 0.01. If the conditions of the cross-spectral analysis are valid, coherency of the x-

component should be zero, since there is no (linear) relationship between the time series. But

Fig. 3.1b clearly shows a significant coherency. This result can be interpreted in two different

ways: 1. mixing is violated as outlined above or 2. the decay of the phase correlations is too

slow such that the cross-spectral analysis has not reached its asymptotic accuracy.

3.3. Synchronization Analysis and Mixing

Like in Chapter 2, the mean phase coherence is used to quantify phase synchronization.

Again, phase synchronization of two coupled, chaotic oscillators occurs if the n : m phase

locking condition is satisfied |nϕx(t) −mϕy(t)| = |Φn,m| < const, where ϕx(t), ϕy(t) denotes

the phase of the time series x(t), y(t) and n,m are given integers. To suppress phase jumps,

induced by the presence of numerical or observational noise, Φn,m is, according to Chapter 2,

modified by Ψn,m = Φn,m mod 2π. Using the latter quantities, the mean phase coherence is

given by

R2
n,m = E[cos(Ψn,m)]2 + E[sin(Ψn,m)]2 ,

cf. Sec 2.3. Recall that the mean phase coherence is Rn,m = 1 for a constant phase difference

between the two time series and Rn,m = 0 for a uniformly distributed phase difference. Note

that the usage of the Hilbert transform, introduced in Sec 2.3, is used in order to determine

the phase difference Φn,m. In our case the phase difference can be calculated directly from a

x-y projection of the corresponding Rössler systems, but the outcome of the synchronization

analysis does not alter if either the Hilbert transform or the direct computation is considered.

The mixing property for the phases is again essential to determine whether the pro-

cesses are phase synchronizing on the basis of measured data or not. For demonstrat-

ing this statement, let us consider two ergodic self-sustained oscillatory systems satisfying

E[cos(Ψn,m)] = E[sin(Ψn,m)] = 0, and thus R2
m,n = 0. Suppose that Ψi, i = 1, · · · , n is a

suitable realization of Ψn,m which is equidistantly sampled in t. By the ergodic theorem R2
n,m



30 Mixing Properties of the Rössler System Chapter 3

is given by

R2
n,m = lim

N→∞







(

N−1
N∑

i=1

sin(Ψi)

)2

+

(

N−1
N∑

i=1

cos(Ψi)

)2






= lim
N→∞

N−2
N∑

i,j=1

(sin(Ψi) sin(Ψj) + cos(Ψi) cos(Ψj))

= N−1 + 2N−2
N−1∑

j=1

N−j
∑

i=1

(
sin(Ψi) sin(Ψi+j) + cos(Ψi) cos(Ψi+j)

)
. (3.9)

Since the sample is equidistant in time and by using the ergodicity again we have

1

N − j

N−j
∑

i=1

(
sin(Ψi) sin(Ψi+j) + cos(Ψi) cos(Ψi+j)

)

= E[sin(Ψ1) sin(Ψ1+j) + cos(Ψ1) cos(Ψ1+j)]
︸ ︷︷ ︸

=ξj

+rNj = ξj + rNj , (3.10)

for each 0 < j < n. The remainder rNj vanishes asymptotically, limN→∞ rNj = 0. Inserting

Eq. (3.10) into Eq. (3.9) we arrive at

R2
n,m = lim

N→∞






N−1 + 2

N−1∑

j=1

N − j

N2
(ξj + rNj)







= lim
N→∞

2

N−1∑

j=1

N − j

N2
ξj . (3.11)

A necessary condition that R2
n,m in Eq. (3.11) vanishes is therefore ξj → 0 if j → ∞. Now,

consider sin(Ψn,m) and cos(Ψn,m) as new observables of the processes, then ξj is the sum of

the auto-covariance function of these quantities. Again, the auto-covariance function asymp-

totically vanishes if mixing, Eq. (3.1), is satisfied. The necessary condition is therefore met

if both processes exhibits mixing. It should further be noted that the equidistant sampling

is not explicitly needed and was only introduced to avoid a rather clumsy notation.

Again, two independent, identical Rössler systems are generated numerically, where the

sampling is chosen to be ∆t = 0.01 for both realizations of length 131072. The time evolution

of Φ1,1 and the distribution of Ψ1,1 is shown in Fig. 3.2 and reveals that the phase-locking

condition seems to be satisfied. Furthermore, the narrow peak of the distribution of Ψ1,1

indicates that the mean phase coherence should be close to unity. Calculating the mean

phase coherence yields R1,1 = 0.92. On the basis of empirical data, one would draw the

conclusion that these two time series are phase synchronized which is again spurious, either

due to a loss in mixing or due to finite size effects. In addition, these results show that this

question can be approached only by analyzing the phase evolution of the Rössler system.
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Figure 3.2: Time evolution of Φ1,1 for two independent Rössler systems, left graph. Clustering of phase

difference Φ1,1 for values close to zero indicates that the phase locking condition |ϕx(t) − ϕy(t)| = |Φn,m| <

const is satisfied. In addition, the histogram of Ψ1,1, right figure, is showing an exposed, sharp peak such that

phase synchronization is emphasized even though both systems do not interact.

3.4. A Model for the Phase Fluctuations

In the following, a model of the phase fluctuations is derived. The analysis shows that the

diffusion constant of the Rössler system depends mainly on the inverse square of the amplitude

in the x-y plane. The possibility of such a phase-amplitude dependency of chaotic oscillators

is briefly discussed in [43]. Assuming that the system behaves like a diffusion process and

that the z-component is approximately constant for a time step ∆t ≪ 1, an approximation

of the phase fluctuations can be determined. The differential equation then reduces to the

form: dx/dt = −y − zt, dy/dt = x+ ay and can be integrated one step ahead

xt+∆t = At e
a∆t

2 cos(ω∆t+ φt) − zt∆t

yt+∆t = At e
a∆t

2

(

ω sin(ω ∆t+ φt) −
√

1 − ω2 cos(ω∆t+ φt)
)

, (3.12)

where ω2 = 1−(a
2 )2 and At is the amplitude and φt is the phase at time t. In order to include

the diffusion, Eq. (3.12) is perturbated by Gaussian white noise. Setting τ = ω∆t + φt, the

extended Eq. (3.12) yields

xt+∆t = At e
a∆t

2 cos(τ) − zt∆t+
√

Dx∆t ǫt

yt+∆t = At e
a∆t

2

(

ω sin(τ) −
√

1 − ω2 cos(τ)
)

+
√

Dy∆t ηt ,

where ǫt, ηt denotes uncorrelated white noise and Dx, Dy are the assumed diffusion constants

for the x and y-component respectively. Now, the phase φt+∆t = arctan(yt+∆t/xt+∆t) is

calculated up to order
√

∆t in all noise terms and yields

φt+∆t = arctan (κt) +
e−

a∆t

2

At cos(τ)
(
1 + κ2

t

)

(

κtzt ∆t+
√

Dy∆t ηt − κt

√

Dx∆t ǫt

)

+O(∆t) ,

where κt = ω tan(φt)−
√

1 − ω2. The diffusion constant of the phase is therefore determined

by DAt,φt
= lim∆t→0 Var(φt+∆t)/∆t, where Var again denotes the variance of a random
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Figure 3.3: (a) Variance evolution over a sample of 1000 independent Rössler systems. (b) Same as (a)

within a time window of 700-750 (solid line). The dashed line indicates the modeled variance of the phase

fluctuations.

variable. Since lim∆t→0 τ = lim∆t→0 (ω∆t+ φt) = φt:

DAt,φt
=

1

A2
t cos2(φt)

(
1 + κ2

t

)2

(
κ2

tDx +Dy

)
. (3.13)

If a≪ 1 then ω ≈ 1 and thus Eq. (3.13) reduces to

DAt,φt
≈ sin2(φt) Dx + cos2(φt) Dy

A2
t

.

The variance of the system’s phase ϕ(t) at time t can then be approximated by

Var(ϕ(t)) ≈ Var(ϕ(0)) +DE[At],E[ϕ(t)] · t , (3.14)

where Var(ϕ(0)) 6= 0, E[At] is the mean amplitude and E[ϕ(t)] the mean phase.

To check the validity of the model assumptions, the variance evolution over a sample of

1000 independent Rössler systems is simulated. The time step is chosen to be ∆t = 0.1.

Fig. 3.3a shows an increasing (in mean) variance of the phases, superposed by some spik-

ing behavior. The diffusion constants Dx, Dy in Eq. (3.14) are fitted to the simulations

using a linear fit algorithm [14]. The identified parameters are Dx = 0.0089 ± 4 · 10−6,
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Dy = 0.0092 ± 6 · 10−6, thus different from zero. A comparison of the modeled variance,

Eq. (3.13), with the simulation is shown in Fig. 3.3b. The comparison shows that our model

captures most of the structure but the modeled variance evolution seems to be low-pass fil-

tered. This effect is probably due to the assumed diffusion constants in the x-y plain which

are not depending on the state of the system. The constants Dx, Dy are therefore repre-

senting mean diffusion coefficients leading to a smoother curve for the variance evolution

of the fluctuations. Beside the phase fluctuations emerging from the system’s equations, a

contribution of numerical noise is always present in the simulations. This noise corruption is

contained in the identified coefficients Dx and Dy. The chosen integration accuracy ε = 10−12

gives a rough estimate on the numerical error of each time step ∆t, see e.g. [14]. Note that ε

cannot be made arbitrarily small, because if ε is close to the machine precision the number of

internal steps for integrating the whole time step ∆t diverges. Since ε2/∆t is several orders of

magnitude smaller than Dx and Dy, contributions from the numerical error can be neglected

in our analysis.

So far, we have derived an approximation of the phase dynamics by a diffusive process.

It should now be shown that such phase diffusion satisfies the mixing condition of Eq. (3.1).

This is one implication which can be drawn from the derivation of the significance level in

Chapter 2. Nevertheless, the mixing condition is now explicitly verified to underline the

following argumentation. To this end, suppose that the diffusion is constant, such that the

sampled phase evolution reads

ϕk+1 = ϕk + ω∆t+
√
D∆t ǫk , (3.15)

for some D 6= 0 and ǫk is again a sequence of uncorrelated white noise. Starting at ϕ0 and

taking the wrapped phase φk = ϕk mod 2π to gain a stationary process, the conditional

probability density ρ(φ∞|ϕ0) = limk→∞ ρ(φk|ϕ0) is thus

ρ(φ∞|ϕ0) = lim
k→∞

1√
2πD∆tk

∞∑

j=−∞

exp

(

−(ω∆tk + ϕ0 − φk − 2πj)2

2D∆tk

)

=
1

(2π)3/2

∫

e−t2/2 dt =
1

2π
. (3.16)

Since ρ(φ∞|ϕ0) does not depend on the initial value ϕ0, the asymptotic independence in

Eq. (3.1) is shown. Moreover, the same result holds for the phase difference of two independent

processes, and therefore R1,1 = 0. If D is not constant with respect to sampling point of

index k but greater than zero, the result of Eq. (3.16) does not change.

Extracting the mean diffusion constant of about Dphase = 2.1 · 10−4 from Fig. 3.3, the

presence of the finite size effect for the synchronization analysis can be verified for the most

simple model given in Eq. (3.15). In order to compare the outcome with the results presented

in Sec. 3.3, the parameters are chosen to be ∆t = 0.01, ω = 1, and N = 131072. The

distribution of the mean phase coherence R1,1 is shown in Fig 3.4. Since almost all mass is

close to unity the finiteness of the amount of data has a predominant effect. Additionally,

the value in case of the Rössler system R1,1 = 0.92 lies within the distribution but is slightly
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Figure 3.4: Distribution of the mean phase coherence R1,1 for two independent processes of type (3.15). The

parameters D, ∆t, ω and the amount of data N are chosen to allow a comparison of the results presented in

Sec. 3.3. This comparison is indicated by the dashed line showing the mean phase coherence for the noise-free

Rössler system under this parameterization.

smaller than the mean mean phase coherence of the simplified model. This situation is exactly

what one expects, because the bursts in the local diffusion rate destroy auto-correlations of

the process. Due to Eq. (3.11) finite size effects are therefore slightly reduced. This positive

result supports the strong presence of effects due to the finite amount of data. Moreover,

applying the test discussed in Chapter 2 yields for this specific setting a critical value of about

4.6× 107, where a 5% level of significance is chosen. Since this value is clearly above one, the

test procedure cannot be applied. But the test statistics can be used to calculate the minimal

amount of data to obtain meaningful critical values. It turns out that if N > 1.33× 107, the

critical value for the 5% level of significance stays below one. Such a sample size calculation

only yields reliable results if the diffusion constant of the phase can be determined.

3.5. Conclusion

The discussion about the phase evolution for the Rössler system has a long history. Crutch-

field et al. [44] claimed that the attractor topology is mainly responsible for the sharp peak,

namely that trajectories are revolving a single hole. This conjecture cannot hold in general,

because the peak of the Rössler system is much broader when, e.g., the parameters are cho-

sen to be a = b = 0.2, c = 13. The attractor topology remains the same in this setting.

An intermittent behavior of the phase was discussed but this hypothesis was rejected af-

terwards [45-47]. Recently, Anishchenko et al. determined an effective diffusion coefficient

by fitting Lorentzian to peaks in the power spectrum [48-50]. The presented work therefore

supports their hypothesis that the chosen length of the time series is sufficiently large such

that the spectral line width can be resolved.

A model of the phase fluctuations for the Rössler system has been derived from the
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system’s equations mainly under the assumptions of diffusion. Properties of this model

are compared to simulated data. We have shown that the model captures the qualitative

feature of the data. The diffusion constants derived from the model fitted to the data are

significantly different from zero. In addition, a simplified but definitely mixing model of

the phase evolution shows almost the same spurious mean phase coherence and the results

from the test statistics derived in Chapter 2 shows that it is far away from its asymptotic

accuracy for the given simulations. From the determined diffusion constant of the phase an

approximate lower bound of the sample size can be determined, such that the test can be

applied. These results are suggesting that the Rössler system for the chosen set of parameters

is mixing. However, the rate of mixing is extremely low, explaining the spurious results for

the cross-spectral and the synchronization analysis as finite size effects.





4
Strong Mixing in Sequences of

Random Graphs and its Asymptotical
Degree Distribution

4.1. Introduction

Random graphs are widely used to model real-world networks of high complexity. Such a

random graph usually consists of a set of n labelled vertices, connected by m edges. The pair

of vertices linked by an edge is selected with respect of some random process. Commonly, the

evolution of these graphs are studied in the ”thermodynamic” limit n→ ∞. One of the most

basic feature of random graph processes is the degree distribution of vertices, namely the

probability of a given total number of links leaving or approaching the vertex. Generally, the

probability is determined for each vertex and obtained from the ensemble of graphs. Often

the asymptotic degree distribution is independent of the vertices. In that case the underlying

process is called degree stationary. Analogue to the stationarity of the distribution at every

time point for time-series of ergodic processes, degree stationarity plays an important rôle for

their analysis on the basis of measured data. This is due to the possibility that the degree

distribution can be obtained from a single realization of the graph generating process, e.g.,

by the histogram of the observed degree over the vertices. However, there is no need that

degree stationarity must be explicitly fulfilled for the following results but is mostly needed

when treating random graphs on an empirical basis. Before introducing the main subject of

this Chapter two important graph evolution processes are briefly discussed.

First, the most simple model of a graph process is the choice of m undirected edges

from the whole set of
(
n
2

)
undirected pairs, introduced by Erdős and Rényi [51, 52]. The

edges are selected independently and with equal probability. It turns out that the degree

distribution converges to a Poisson distribution for an appropriate choice of m with respect

37
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to the number of vertices n. A similar model, introduced by Gilbert [53], also shows a

Poissonian degree distribution. These models have in common that they describe a graph

evolution which is completely independent from their predecessors. Beside the simple way

the graphs are generated, they show an immense richness of mathematical properties as the

work of Erdős and Rényi shows. Second, an exemplary process recently proposed by Barabási

and Albert [54-56] shows a degree distribution which obeys a power law P (d) ∼ d−γ . Here,

the so called preferential attachment is used as graph generating process for this exemplary

process. In this case, a new vertex is added to the graph in each generation. A single edge is

then drawn from the new vertex to a randomly chosen vertex of the preexisting graph. The

probability with which the endpoint of this edge is chosen is proportional to the degree of

the vertices. Thereby, this process motivates the term preferential attachment since vertices

of high degree are preferred in every stage the graph is build. Interestingly, this process can

be related or transformed to a Erdős and Rényi graph such that the degree distribution can

exactly be derived as shown in [57]. It turns out that the characteristic exponent of the degree

distribution P (d) ∼ d−γ is γ = 3. Since the power law does not contain a characteristic scale,

Barabási and Albert called graphs possessing a power law tail as being scale-free. In contrast

to the first example, the Erdős and Rényi random graphs, statistical dependencies between

the selected edges arises which is the crucial point for mathematical analysis presented in

Sec. 4.3.

Scale-free degree distributions have been observed for a large amount of real-world net-

works such as the Internet, WWW, social and biological networks, [56, 58, 54, 59, 60]. This

predominate occurrence of scale-free networks compared to the graph generating process sug-

gested by Erdős and Rényi is probably due to the more realistic generation process. However,

this was remarked by Erdős and Rényi themselves, in [52] they write: ”Of course, if one aims

at describing such a real situation, one should replace the hypothesis of equiprobability of

all connection by a more realistic model”. Similar to the central limit theorem and its gen-

eralization to stable limit laws, see e.g. [22], there might also exists a domain of attraction

to scale-free networks. This question is partially answered in Sec. 4.3. Since such a question

can only treated in a mathematically rigorous way, the structure of this Chapter differs sig-

nificantly from the others. It is therefore necessary to define all elements used to built the

general mathematical structure, which is accomplished in Sec. 4.2. Finally, the consequences

of the derived results are discussed in Sec. 4.4

4.2. The Model and Basic Definitions

The evolution of the regarded random graphs are given by a discrete time stochastic process

on a space Ω,
(
Ω,F , P, (Gn,m(n))n≥1

)
, where the σ-algebra F is generated by the n × n

matrices Gn,m(n), having entries g
n,m(n)
ij ∈ {0, 1}. Again, the total number of vertices is

denoted by n, the number of edges depending on n is given by m(n), whereas m(n) → ∞ if

n → ∞. A pair of vertices (i, j) is linked from vertex i to vertex j only if g
n,m(n)
ij = 1. The

full matrix Gn,m(n) therefore defines a directed graph containing self-edges, an edge which

links only one vertex. If a graph does not contain any self-edges, the diagonal of Gn,m(n) is
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omitted from the probability space. Additionally, all elements gij are identified with gji for

undirected graphs.

The degree of vertex i at generation n is given by the random variable dn
i , which is

related to the random matrices Gn,m(n) by dn
i =

∑n
j=1

(
g

n,m(n)
ij + g

n,m(n)
ji

)
for directed and

dn
i =

∑n
j=1 g

n,m(n)
ij for undirected graphs. Note that in each generation only one vertex is

added to the graph. Moreover, the asymptotic degree distribution is said to regular if

dn
i

d→ di , n→ ∞ (4.1)

converges in distribution for all i ∈ N. It turns out that the latter condition is of great

importance in the discussion of asymptotic degree distribution since it excludes oscillating

degree sequences and distributions having all its mass at infinity. An example, in which the

distribution is not regular is given by the following process: suppose that (Xi)i≥1 ∈ Rp is a

realization of an ergodic dynamical process. Then,

g
n,m(n)
ij =

{
1 if ||Xi −Xj || ≤ ǫ for all 1 ≤ i, j ≤ n and i 6= j

0 else
,

for some ǫ > 0. The non-regularity of the degree distribution is due to ergodicity of the

dynamical process since by the invariant measure P , we obtain for each i that P
(
{x ∈ Rp :

||Xi − x|| ≤ ǫ}
)
> 0. By the ergodic theorem [61, 62], we observe that n−1

∑n
j=1 g

n,m(n)
ij =

Op(1) and therefore dn
i = Op(n). Hence, this example shows that the graph generating

process has to chosen with care such that the regularity is guaranteed. Moreover, regularity

is essential to extrapolate the degree law of a finite realization to its asymptotic distribution.

In a similar fashion, the total degree distribution dn at generation n is given by P (dn ≤ k) =

n−1
∑n

i=1 P (dn
i ≤ k). Again, the asymptotic total degree distribution is regular if

dn d→ d , n→ ∞ . (4.2)

Analog to the stationary time-series, a degree distribution is called asymptotically stationary

if di in Eq. (4.1) is independent of each vertex i. This property plays and important rôle for

the inverse problem but is not essential for the following mathematical treatment.

Inspired by the classical central limit theorem for real valued random variables a mix-

ing condition is established. However, this condition has to be different from the mixing

property introduced in chapter 2 since it turns out that the spatial rather than the temporal

dependency structure is of importance for determining asymptotic degree distributions. Since

there is no appropriate distance measure for capturing the spatial dependence structure, the

following mixing condition is based on a partition of the graph into subgraphs. Subgraphs,

rather than the vertices itself are used to provide a more general characterization of the graph

generating process. If these subgraphs are asymptotically independent, the graph process is

called mixing. Precisely, consider all partitions of {1, · · · , n} into l disjointed, non-empty sets

Mn,l. Thus, the number of elements of Mn,l is given by the recursion

Nn,l
p =

ln

l!
−

l−1∑

k=1

1

(l − k)!
Nn,k

p and Nn,1
p = 1 . (4.3)
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Here, ln is the total number of ordered l-partitions which is due to the multinomial series

ln =
∑

n1,··· ,nl≥0 ; n1+···+nl=n

n!

n1! · · · nl!
.

Note that empty sets are also included. To exclude them, we distribute l− k empty sets over

the set of k non-empty partitions to count the contribution of the empty sets in ln. This leads

to l!
(l−k)! N

n,k
p and is thus the total amount of ordered partitions having l − k empty sets.

Hence, the sum over all l−1 empty sets yields the desired contribution to be subtracted from

ln. Finally, the term 1/l! takes into account that the ordering of the l-partitioning is arbitrary.

Now, decompose the set Mn,l into its subsets such that Mn,l = {C1, · · · , CNn,l
p
}. Each of the

sets Ci then contains a distinct l-partitioning Ci = {V i
1, · · · ,V i

l }. For a given partition Ci

the function gCi
(k) assigns each vertex k ∈ {1, · · · , n} to the number of the corresponding

partition. For example, if vertex k lies in partition l, thus k ∈ V i
l , we obtain gCi

(k) = l. Let1A(k) denote the indicator function with respect to some set A, which has the property that1A(k) = 1 if k is an element of A and zero otherwise. We can therefore represent gCi
(k)

by gCi
(k) =

∑l
j=1 j 1Vi

j
(k). For each i, j ∈ {1, · · · , n} and Ck ∈ Mn,l consider the following

σ-algebras:

Fij = σ(gij) and

FCk

ij =







σ
(
⋃n

r,s=1 σ(grs) \
⋃

gCk
(r)=gCk

(s)=gCk
(i) σ(grs)

)

if gCk
(i) = gCk

(j)

σ
(
⋃n

r,s=1 σ(grs) \ σ(gij)
)

else
, (4.4)

where σ(·) is the smallest σ-algebra either induced by a random variable or contains the given

system of sets. The σ-algebra Fij contains only the link between vertex i and j. However,

the interpretation of FCk

ij is more complex. If i and j are lying in the same partition with

respect to Ck, links within the partition are not measurable if the measure restricted to FCk

ij

is considered. But if i and j are lying in distinct partitions only the probabilistic information

of the edge linking i with j is excluded in FCk

ij . This construction thus offers the possibility

to measure statistical dependencies between the partitions where vertex i and j is located,

thereby providing a suitable basis for the definition of mixing in sequences of random graphs.

A sequence of random graphs is called strongly mixing if for some integer valued function

l(n) ≤ n,

αl(n)
n = inf

Ck∈Mn,l(n)
sup

{

|P (A ∩B) − P (A)P (B)| : 1 ≤ i, j ≤ n,A ∈ Fij , B ∈ FCk

ij

}

(4.5)

satisfies

lim
n→∞

αl(n)
n = 0 .

Since the following mathematical analysis is based on this definition, a closer explanation of

the interpretation of Eq. (4.5) is desired. First, the sets A and B in Eq. (4.5) are possessing the

following property: if gCk
(i) = gCk

(j) the set B contains only links connecting other subgraphs

than that of gCk
(i) = gCk

(j). This is necessary to avoid that |P (A∩B)−P (A)P (B)| measures

statistical dependencies between vertices of a single partition. The other case gCk
(i) 6= gCk

(j)
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inherently excludes the possibility that statistical dependencies within a single partition is

measured since the nodes i and j are lying in different partitions. The only link to be

excluded in set B is that from i to j, since identical links in A and B are leading to α
l(n)
n > 0.

However, such a definition would not be suitable for our purpose. Second, by the infimum

over all possible l-partitionings the best partition scheme is selected possessing the lowest

statistical dependencies. Interpreting the partitions as subgraphs, α
l(n)
n therefore measures

the statistical dependencies between subgraphs whereas the decomposition of the graph into

l subgraphs is optimal with respect to its dependency structure.

With the aid of the mixing coefficient, defined by Eq. (4.5), we are going to state conditions

for which the asymptotical degree distribution can be regarded as being scale-rich. The

asymptotical degree distribution of node i, P (di = k) for all k ∈ N0 is said to be scale-rich

if there exists a rapidly varying function h(x), such that P (di = k) is dominated by h for

all k ≥ k0. According to [63, 64], a positive, Lebesgue measurable function h on (0,∞) is

referred to as rapidly varying (with index −∞), say h ∈ R−∞ if

lim
x→∞

h(tx)

h(x)
=

{

0 if t > 1

∞ if 0 < t < 1
. (4.6)

Degree distributions which can, e.g., be dominated by a homogeneous function h of degree

α are not scale-rich because h(tx) = tα h(x) violates Eq. (4.6). Therefore, power law degree

distributions are not scale-rich. On the other side, if the tail of P (di = k) can be approximated

by a regularly varying function h ∈ R−γ , γ ∈ R, namely a positive, Lebesgue measurable

function satisfying

lim
x→∞

h(tx)

h(x)
= t−γ , t > 0 , (4.7)

the corresponding degree distribution is called scale-free. Whereas, a positive function f(x)

approximates the tail of some positive function g(x) if |f(x)/g(x) − 1| = o(1) for x → ∞
which is referred to as f(x) ∼ g(x). Note that each degree distribution having a finite

maximal degree is inherently scale-rich and total degree distributions are treated in a similar

way. In the following, we only regard directed graphs having no self-edges. The results based

on this restricted set of graphs are basically the same as for a more general class, because

the effects originating form self-edges or effects due to undirected links are asymptotically

negligible.

4.3. Mixing Sequences of Random Graphs

The first result is based on the assumption that the mixing coefficient vanishes for all n ≥ n0.

Therefore, between the partitions the edge distribution should be similar to that of Erdős and

Rényi. If in addition, the maximal number of elements of the partitions approaches a finite

number it is likely to obtain a scale-rich graph. Because the statistical independence of the

subgraphs is satisfied for n ≥ n0, the generating function plays a major rôle in the following

result. A generating function of a discrete probability distribution, e.g., pk for all k ∈ N0, is
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given by the series g(s) =
∑∞

k=0 pk s
k for each s ∈ Ω ⊂ C such that the series is convergent.

Since the probability distribution is normalized: g(1) = 1 holds. Further properties of the

generating functions are, e.g., that the moments of the distribution can be obtained by

derivatives of g evaluated at s = 1 and like the Fourier series, a discrete convolution of

two probability densities corresponds to the product of their generating functions. From the

generating function g(s), the distribution can be gained with aid of the residue theorem. Let

C a be a closed curve in the complex plain around zero, then pk = (2πi)−1
∫

C g(s) s
−(k+1) ds.

After this brief survey of the properties of generating functions, we return to main subject of

this section. For simplicity, let us write pn
ij = P (g

n,m(n)
ij = 1). Then,

Lemma 1. If α
l(n)
n = 0 for all n ≥ n0, n − 1 − l(n) = O(1) and limn→∞

∑n
j=1,i6=j(p

n
ij +

pn
ji) < ∞ for some i ∈ N, then the asymptotic degree distribution of vertex i is scale-rich.

Proof. Let n ≥ n0, Cn a partition for which Eq. (4.5) attains its minimum and Vn = Vn
gCn (i).

The degree distribution of vertex i is now divided into the degree contributing from vertices

within Vn, din,n
i and the links to or from outside of Vn, denoted by dout,n

i . We first show that

dout,n
i is scale-rich. Since α

l(n)
n = 0, the generating function of dout,n

i is given by

gn(s) =
∏

j 6∈Vn

(1 + pn
ij(s− 1))(1 + pn

ji(s− 1)) for all n ≥ n0 .

Setting limn→∞ gn(s) = g(s) =
∑∞

k=0 aks
k and N(n) = 2 (n−|Vn|) which is maximal possible

degree for dout,n
i , the radius of convergence of g(s) can be determined by

|g(s)| ≤
∞∑

k=0

ak|s|k = g(|s|)

= lim
n→∞

∏

j 6∈Vn

(1 + pn
ij(|s| − 1))(1 + pn

ji(|s| − 1))

≤ lim
n→∞



1 +
|s| − 1

N(n)

∑

j 6∈Vn

(pn
ij + pn

ji)





N(n)

= exp (λi(|s| − 1)) , (4.8)

where λi = limn→∞
∑

j 6∈Vn(pn
ij +pn

ji) <∞ and N(n) → ∞ since |Vn| is bounded. In Eq. (4.8)

a standard estimate of the geometric and the arithmetic mean is used. Thus, the power

series of g(s) converges for all s ∈ C. We can further assume without loss of generality, that

ak > 0 for almost all k ∈ N0, otherwise dout,n
i is scale-rich and nothing is left to show. The

convergence of ak and ak > 0 implies that lim supk→∞ ak+1/ak = 0. Let bk an appropriate

sub-series such that bk > 0 for all k ∈ N0 and bk+1/bk → 0. Now, for some 0 < ǫ < 1 there

exists a k0 such that for all k ≥ k0, 0 ≤ bk+1/bk ≤ ǫ is satisfied. Setting h(x) = b[x], where

[x] denotes the integer part of x, we have for all t > 1:

0 ≤ h(tx)/h(x) = b[tx]/b[x] ≤ ǫ[x(t−1)] → 0 if x→ ∞ .



Section 4.3 Mixing Sequences of Random Graphs 43

Analogously, h(tx)/h(x) → ∞ for 0 < t < 1 can be shown regarding b[x]/b[tx]. Therefore,

bk can be dominated by a rapidly varying function. Since g(1) = 1 and 0 ≤ ak ≤ 1,

ak = limn→∞ P (dout,n
i = k) = P (dout

i = k) can thus be dominated by a rapidly varying

function, thus dout
i is scale-rich. Finally, di = din

i + dout
i and is the sum of two independent

random variables and since |Vn| is bounded, the degree distribution of vertex i scale-rich.

Now, the conditions of lemma 1 are examined in detail. It is shown below that the

condition limn→∞
∑n

j=1,i6=j(p
n
ij + pn

ji) < ∞ can be dropped if the degree distribution is

assumed to be regular.

Lemma 2. If the graph process satisfies α
l(n)
n = 0 for all n ≥ n0, n − 1 − l(n) = O(1) and

the degree distribution is regular then limn→∞
∑n

j=1,i6=j(p
n
ij + pn

ji) < ∞ for all i ∈ N.

Proof. Assume that
∑n

j=1,i6=j(p
n
ij + pn

ji) → ∞ for some i ∈ N. By using the same notation as

introduced in lemma 1 and the estimate, Eq. (4.8), of |g(s)|, we have g(s) = 0 for all s ∈ C
satisfying |s| < 1. Consider a closed curve C inside the unit circle and around zero, thus by

the residue theorem we obtain

lim
n→∞

P (dout,n
i = k) = ak =

1

2πi

∫

C

g(s)

sk+1
ds = 0 , for all k ∈ N0 .

Consequently, the degree distribution is not regular since all mass of limn→∞ dout,n
i is con-

centrated at infinity. It should be noted that contributions from din,n
i can again be neglected

asymptotically, because the convolution of the distributions din,n
i and dout,n

i shifts the total

mass to infinity since the distribution din,n
i has a finite maximal degree by n−1−l(n) = O(1).

The condition limn→∞
∑n

j=1,i6=j(p
n
ij + pn

ji) < ∞ can therefore be replaced by the demand

that the degree distribution is regular. However, the condition n−1− l(n) = O(1) is essential

for establishing a scale-rich degree distribution as in lemma 1. In order to demonstrate this

statement, consider the extremal situation, where both l(n) → ∞ and n−1− l(n) → ∞, e.g.,

l(n) = O(
√
n). According to the proof of lemma 1, dout

i is still scale-rich since N(n) → ∞.

Let us further assume that din
i is scale-free, namely that there exists a regularly varying

function h ∈ R−γ satisfying 0 < P (din
i = k) ∼ h(k). This, however, is possible because some

subgraphs may accumulate an infinite number of vertices in the limit n→ ∞. Let g(z) be the

generating function of dout
i and f(z) the generating function of din

i . Since f(z) =
∑∞

k=0 bk z
k

has a finite radius of convergence, bk−1/bk → z0 as k → ∞. Applying theorem 2 of [65] we

have for g(z)f(z) =
∑∞

k=1 ck zk, ck ∼ g(z0) bk. For n ≥ n0 the independence of dout
i and

din
i yields P (di = k) = ck ∼ g(z0) bk is scale-free. The assumption n − 1 − l(n) = O(1) is

therefore essential to gain a scale-rich graph under the conditions of lemma 1. Thus, we can

state the following corollary:

Corollary 1. If α
l(n)
n = 0 for all n ≥ n0, n−1−l(n) = O(1) and the degree distribution is for

some vertex i ∈ N is regular, then the asymptotic degree distribution of node i is scale-rich.
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At this point let us consider the more general situation that the mixing coefficient α
l(n)
n

only vanishes asymptotically. It turns out, however, that α
l(n)
n cannot arbitrarily scale with

respect to n. This is manly due to the increased number of combinations contributing to the

same degree whenever n increases. We state the following theorem:

Theorem 1. If α
l(n)
n = o(n−1/2 2−n), n− 1 − l(n) = O(1) and the degree distribution is for

some vertex i ∈ N is regular, then the asymptotic degree distribution of node i is scale-rich.

Proof. Again, consider for some vertex i ∈ N the random variables dout,n
i , din,n

i and the set

Vn as defined in lemma 1. Further, let d̃out,n
i be the a random variable having a distribu-

tion uniquely determined by the generating function gn(s) which is also defined in lemma 1.

Therefore, the distribution of d̃out,n
i describes the analogue situation for which all statisti-

cal dependencies are removed and according to corollary 1, d̃out,n
i converges to a scale-rich

distribution. On the other side, the distribution P (dout,n
i = k) which takes the statistical

dependencies into account is determined by the sum of all

P (e1, · · · , e2(n−|Vn|)) = P
(

{gn,m(n)
ij1

= e1} ∩ · · · ∩ {gn,m(n)
j2(n−|Vn|)i

= e2(n−|Vn|)}
)

,

where both {j1, · · · , jn−|Vn|}, {jn−|Vn|+1, · · · , j2(n−|Vn|)} are denoting the labels of all vertices

in {1, · · · , n}\Vn and ej ∈ {0, 1} satisfying
∑2(n−|Vn|)

j=1 ej = k. By setting N(n) = 2 (n−|Vn|)

and Pjk
= P

(

g
n,m(n)
ijk

= ejk

)

an estimate of Bn =

∣
∣
∣
∣
P (e1, · · · , eN(n))−

∏N(n)
k=1 Pjk

∣
∣
∣
∣
is given by

Bn =

∣
∣
∣
∣
P (e1, · · · , eN(n)) − Pj1 ·

N(n)
∏

k=2

Pjk

∣
∣
∣
∣

=

∣
∣
∣
∣
P (e1, · · · , eN(n)) − Pj1 · P (e2, · · · , eN(n)) + Pj1 ·

(
P (e2, · · · , eN(n)) −

N(n)
∏

k=2

Pjk

)
∣
∣
∣
∣

≤
∣
∣
∣
∣
P (e1, · · · , eN(n)) − Pj1 · P (e2, · · · , eN(n))

∣
∣
∣
∣

︸ ︷︷ ︸

≤ α
l(n)
n

+ Pj1
︸︷︷︸

≤1

·
∣
∣
∣
∣

(
P (e2, · · · , eN(n)) −

N(n)
∏

k=2

Pjk

)
∣
∣
∣
∣

≤ αl(n)
n +

∣
∣
∣
∣

(
P (e2, · · · , eN(n)) −

N(n)
∏

k=2

Pjk

)
∣
∣
∣
∣
≤ . . . ≤ (N(n) − 1) αl(n)

n (4.9)

The sum of all
(N(n)

k

)
combinations satisfying

∑2(n−|Vn|)
j=1 ej = k the yields an upper bound

for Dn =
∣
∣
∣P (dout,n

i = k) − P (d̃out,n
i = k)

∣
∣
∣. Since the right hand side of Eq. (4.9) does not

depend on the ej ’s, we arrive at

Dn ≤
(
N(n)

k

)

(N(n) − 1) αl(n)
n ≤

(
N

N/2

)

(N − 1) αl(n)
n .
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Using Stirling’s formula N ! =
√

2πN
(

N
e

)N (
1 +O(N−1)

)
to approximate

(
N

N/2

)
by

(
N

N/2

)

=
N !

(N/2)! (N/2)!
=

√

2

πN
2N
(
1 +O(N−1)

)

and therefore

Dn ≤
√

2

π

√
N 2N αl(n)

n

(
1 +O(N−1)

)
. (4.10)

Since α
l(n)
n = o(n−1/2 2−n), Eq. (4.10) yields limn→∞Dn = 0 and therefore dout,n

i
d→ d̃out,n

i .

Hence, it is possible to dominate limn→∞ P (dout,n
i = k) = P (dout

i = k) by a rapidly varying

function and since |Vn| is bounded, the degree distribution of vertex i is scale-rich.

Theorem 1 states that under the given conditions vertex i of a graph process evolves to a

scale-rich degree distribution. Consider the case that each vertex of the graph is having a

regular degree distribution. Then under the conditions of theorem 1, the degree distribution of

each vertex converges to a scale-rich distribution. However, if the total degree distribution is

considered, the conditions above are not sufficient. Despite that λi = limn→∞
∑n

j=1,j 6=i(p
n
ij +

pn
ji) < ∞, λi may satisfy λi → ∞ if i → ∞. To exclude this situation, the assumption that

the total degree is regular, Eq. (4.2), turns out to be sufficient. This leads to:

Theorem 2. If α
l(n)
n = o(n−1/2 2−n), n−1− l(n) = O(1), the degree distributions for all ver-

tices are regular and the total degree distribution is regular, then the total degree distribution

is asymptotically scale-rich.

Proof. Analogue to the proof of lemma 1, let limn→∞ gi
n(s) = gi(s) be the asymptotic

generating function of dout
i for vertex i. Let further dout be defined by P (dout = k) =

limn→∞ n−1
∑n

i=1 P (dout,n
i = k) and which posses the generating function h(s). An upper

bound of |h(s)| is

|h(s)| ≤ lim
n→∞

n−1
n∑

i=1

gi
n(|s|) ≤ lim

n→∞
n−1

n∑

i=1

exp (λi(|s| − 1)) ,

where λi is again given in lemma 1. Let us assume that the sequence (λi)i∈N is not bounded,

because in the opposite case dout is scale-rich using the same argumentation of lemma 1.

Setting xi = exp (λi(|s| − 1)), thus for |s| < 1 we have xi → 0 if i→ ∞ since λi diverges. By

a theorem of Toeplitz, the convergence of xi to zero implies

|h(s)| ≤ lim
n→∞

n−1
n∑

i=1

xi = lim
n→∞

xn = 0 .

Again, from the residue theorem can be concluded that P (dout = k) = 0 for all k. The

process does not yield a regular distribution which is a contradiction to the assumption.

Therefore, the sequence (λi)i∈N is bounded and the total-degree converges to a scale-rich

distribution.
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If the asymptotic degree distribution is stationary as defined in Sec. 4.2, the whole situa-

tion simplifies significantly. Since the asymptotic distribution di is invariant with respect to

the vertex i, the total degree distribution coincides with the distribution for each individual

vertex in the asymptotic limit n → ∞. Theorem 1 and 2 can therefore be merged in the

following manner: suppose that the asymptotic degree distribution is asymptotically station-

ary and the mixing coefficient satisfies α
l(n)
n = o(n−1/2 2−n) where n− 1− l(n) = O(1), then

limit distribution is scale-rich. Consequences of the these results are now discussed in the

following section.

4.4. Discussion and Conclusion

So far, based on a definition of strongly mixing graphs a limit theorem for scale-rich degree

distributions is established. Here, the notion scale-rich and scale-free is solely based on the

behavior of the degree distribution. Precisely, if the degree distribution scales according

to a power law or the distribution can asymptotically be approximated by a regular varying

function, the resulting network is called scale-free. Otherwise, if the degree distribution can be

dominated by a rapidly varying function, the graph is called scale-rich. However, there is not

a commonly accepted definition of scale-free networks or graphs in the literature. Additional

network specific signatures are often consulted for this purpose which are mainly based on

the analysis of graphs obtained by preferential attachment, see e.g. [66, 56, 67, 54, 55, 68, 69].

In this chapter, we restricted our attention only on the asymptotic degree distribution of

probabilistic graph processes and therefore reduce the definition of scale-free and scale-rich

networks only to this feature. In the following discussion of the results three issues are

addressed: first, the relation of the defined strong mixing condition to a preexisting measure

of the dependence structure, second, the motivation to incorporate finite subgraphs into α
l(n)
n ,

and third, possible implications for real networks such as protein interaction networks.

Let us address the first issue: Assortative/disassortative mixing introduced by Newman

in [70] is based on degree correlations of the vertices. In order to measure these correlations,

a quantity r is defined which is strongly related to the Pearson’s correlation coefficient.

According to Eq. (4) in [70] this quantity can be calculated using

r =
m−1

∑m
i=1 jiki −

(
m−1

∑m
i=1(ji + ki)/2

)2

m−1
∑m

i=1(j
2
i + k2

i )/2 −
(
m−1

∑m
i=1(ji + ki)/2

)2 , (4.11)

where ji, ki are the degrees of the vertices at the ends of edge i. The normalization in

Eq. (4.11) is chosen that r can attain values within the range −1 ≤ r ≤ 1, like the usual

correlation coefficient. A graph having r > 0 is called assortative mixing whereas a graph

possessing r < 0 is said to be disassortative mixing. This might be interpreted as follows, if on

one side high degree vertices are attached with preference to vertices also having a high degree

then assortative mixing is expected. On the other side, high degree vertices are preferentially

attached to low degree vertices disassortative mixing should be observed. These properties

of r are, e.g., used to study synchronization on complex networks [71] but are not useful to

discriminate scale-free and scale-rich limit distributions. In [70] it is, e.g., shown that both,
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the preferential attachment as introduced by Barabási and Albert and the Erdős and Rényi

model are having r = 0. Moreover, an algorithm can be constructed to obtain a variety of

scale-free graphs having r = 0, see [72]. Reasons that scale-free and scale-rich graphs cannot

be distinguished from the value of r is that second moments are not sufficient to capture

the entire statistical dependency structure which is also similar in the case of the classical

central limit theorem. Even more important, due to aggregation obtained by calculating the

degree distribution the desired information to discriminate scale-free from scale-rich degree

distributions is destroyed.

Second, the motivation to introduce finite subgraphs into the mixing condition is mainly

driven by the occurrence of network motifs in biochemical relations, see e.g. [73-76]. These

motifs are highly conserved modules of networks occurring at a significantly higher rate than

one would expect to observe these structures at random. Not only in biological networks one

would expect to see these motifs but also in artificial networks like electronic circuits. Network

motifs can be regarded as building blocks which carry most of the network’s functionality.

Since these highly correlated substructures are usually finite in size, e.g., not larger than

five nodes for the protein interaction network in yeast [75], these motifs do not alter the

asymptotical degree distribution as shown above. In contrast, they would spoil the mixing

coefficient α
l(n)
n if not taken into account. It is thus necessary to incorporate the possibility

of having highly dependent subgraphs into α
l(n)
n to obtain more general results.

Third, consequences of the given theory are presented in the following. Let us first address

the problem that usually the picture of a network is incomplete, where certain vertices are left

out due to the impossibility to measure all components of the graph. This lack of information

can be regarded as sampling of the underlying graph which is also studied in [77]. In this

study the authors come to the conclusion that due to the sampling of the network a different

degree distribution can be observed rather than the real underlying distribution. Using

the presented theory, this result can also be obtained. Consider that the underlying graph

is exhibiting a scale-free degree distribution. Unfortunately, the sampling scheme destroys

central statistical dependencies such that the mixing coefficient of the sampled graph would

satisfy α
l(n)
n = o(n−1/2 2−n). By theorem 1 or 2 the sampled graph shows a scale-rich

degree distribution even though the real underlying distribution is scale-free. However, in real

networks this is likely not happen because strongly correlated motifs are generally the central

components gluing the motifs together in order to achieve the network’s function as whole.

Missing these components therefore results in a complete lost of function of the network.

This might prevent the usage of an inappropriate sampling scheme. As second consequence,

consider that there is an evidence that the graph of interest is scale-free. Reverting the

assertions of the presented theorems leads to the fact that the statistical dependencies between

some finite subgraphs are scaling at a rate slower than n−1/2 2−n, where n is the network size.

It is therefore possible to gain some insights of the evolution of the dependency structure by

the classification of the degree distribution in either scale-free or scale-rich distributions. As

example, graphs following preferential attachment are preserving inter vertex correlations.

In summary, a theory based on a definition of strong mixing in sequences of random graphs

is presented. It is shown that this theory is capable to distinguish scale-rich behavior from
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scale-free behavior on the basis of the scaling of the mixing coefficient α
l(n)
n with respect to the

total amount of vertices n. Motivated from the occurrence of highly correlated network motifs

in biological systems, only statistical dependencies between finite subgraphs are measured by

α
l(n)
n to generalize the results. Consequences of this theory are also discussed with respect to

the problem that most of the observed networks are not complete but sampled. It is argued

that this sampling can destroy correlations which may alter the degree distribution of the

observed graph. The presented theory can be seen as a first step toward a limit theorem for

degree distributions of complex networks. Furthermore, the rather strict conditions to obtain

a scale-rich degree distribution suggests the predominate occurrence of scale-free graphs.



5
Parameter Estimation in Differential

Equations with Application to
Biochemical Processes

5.1. Introduction

Processes involved in biochemical networks are currently far too complex to be approached

on a fundamental basis, e.g., using quantum chemistry. Based on various well accepted

simplifying assumptions, phenomenological models are used to achieve a deeper insight of

the intra-cellular organization and its functionality. Basically, there are three different levels

of abstraction which differ on the specific regime the models intend to describe. These are,

stochastic gene expression models, e.g. [78], spatially inhomogeneous deterministic models,

e.g. [79], and spatially homogeneous models, e.g. [80]. In this Chapter we focus on the latter

mode of describing intra-cellular processes which is frequently used in signal transduction

networks. For this specific type, it is necessary to assume that the involved chemical reactions

are operating on time scales which are large compared to the diffusion of the substances. In

that case, the substances of interest can be regarded as being well stirred such that no spatial

effects are playing an important rôle. Additionally, the number of involved molecules has to

be high enough in order to neglect stochastic fluctuations. Under these general assumptions,

the biochemical reactions can be modeled with a system of ordinary differential equations

(ODEs).

Usually, a priori information obtained from biochemical experiments is used to translate

the knowledge of the process into a system of ODEs. Sometimes the perception of biochemical

process is incomplete or debated such that various models can be proposed. On the basis of

general design properties paired with a mathematical analysis some of these models can often

be abolished, such a procedure is, e.g., followed in [81]. If quantitative experimental data

49
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about the system is available, a model selection of alternative models and the verification of

the best model in terms of goodness of fit can be proceeded. This procedure leads directly

to the problem of estimating the parameters as well as the initial conditions in ODEs. Due

to the following items it is a challenging task: first, usually a limited number of substances

in a living cell can be observed and that these measurements are in general corrupted with

noise. The procedure should be able to cope with partially observed, noisy data. Second,

the involved optimization of estimating the parameters is highly non-linear and non-convex.

Thereby, the problem of ending up in a local optimum arises. And forth, often not all

parameters can be estimated for the given data set. The possible parameter combinations,

leading to the optimum, are no longer a single point but usually a manifold such that a certain

fixation of the estimates has to be done, either in advance or by the estimation method itself.

There are several different approaches which meet these requirements or at least most of

them. These approaches mostly differ from the optimization method they use. Possible

optimization routines can be classified into global or local procedures. Methods based on

global minimization routines are, e.g., random search and adaptive stochastic methods [82-85],

clustering methods [86], evolutionary computation [87] and simulated annealing [88]. A

detailed discussion of these methods with respect to parameter identification in ordinary

differential equations is given in [89]. The disadvantage of stochastic optimizers is mainly

their immense computational cost which is the price for the flexibility and stability of these

methods. On the other side, local optimization procedures such as sequential quadratic

programming (SQP), Newton methods, quasi-Newton methods, are computationally efficient

but they tend to converge to local minima. In case of parameter identification in ODEs the

problem of convergence to local minima is predominant if the so called initial value approach

is considered. This approach utilizes the fact that the trajectory is uniquely determined by

the parameters and initial values. In the following section this method is described in detail.

The situation stated above further suggests that there is a trade-off between compu-

tational efficiency and stability for estimating parameters in ODEs. In comparison to the

initial value approach, the proposed method, multiple shooting provides enhanced stability

with only a slight increase of the computational cost. The method was introduced in [90]

and was substantially enhanced and mathematically analyzed by Bock [91-93]. The main

idea of the method is to introduce more flexibility to search the optimal parameters. This

is done by allowing discontinuous trajectories during the optimization process. Continuity

of the trajectories is only forced at convergence to obtain a regular solution of the ODE.

By utilizing such a strategy, the method can stay closer to the measurements and uses their

information more efficiently. A detailed discussion of multiple shooting is given in Sec. 5.3

and an extension to the aforementioned problem that not all parameters can be estimated,

non-identifiable problems, is presented in 5.4. To undermine the superior properties of the

proposed method over the classical initial value approach the results from a simulation study

are presented in Sec. 5.5. Finally, an application to in vivo measurements of a prominent

signal transduction network is given in Sec. 5.6.
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5.2. The Estimation Problem

Suppose that a dynamical system is given by the d-dimensional state variable x(t) ∈ Rd

at time t ∈ I = [t0, tf ], which is the unique and differentiable solution of the initial value

problem

ẋ(t) = f(x(t), t, p) x(t0) = x0 . (5.1)

The right-hand side of the ODE depends on some parameters p ∈ Rnp . It is further assumed

that f is continuously differentiable with respect to the state x and the parameters p. Let

Yij denote the data of measurement i = 1, . . . , n and of observable j = 1, . . . , obs, whereas n

represents the total amount of data and obs is the number of observable. Moreover, the data

Yij satisfies the following observation equation

Yij = gj(ti, p) + σijǫij j = 1, . . . , obs , (5.2)

for some observation function g : Rd → Robs, d ≥ obs, σij > 0, and ǫij ’s are independent and

standard Gaussian distributed random variables. The sample points ti are ordered such that

t0 ≤ t1 < · · · < tn ≤ tf and the observation function g(·) is again continuously differentiable

in both variables. The generalization of Eq. (5.2) to more than one experiment, possibly

under different experimental conditions, reads:

Yijk = gj(x(tij), p) + σijkǫijk k = 1, . . . , nexp , (5.3)

where nexp is the number of experiments performed. Certain parameters may be different for

each experiment, but the treatment of these local parameters and the different experiments

requires only minor modifications of the described procedures and therefore only the one-

experiment design nexp = 1 is considered.

On the basis of the measurements Yij the task is now to estimate the initial state x0 and

the parameters p. The principle of maximum-likelihood, see e.g. [94], yields an appropriate

cost function which has to be minimized with respect to the parameters x0 and p. Defining

x(ti;x0, p) as being the trajectory at time ti, the cost function is then given by

L(x0, p) =
n∑

i=1

obs∑

j=1

(Yij − gj(x(ti;x0, p), p))
2

2σ2
ij

. (5.4)

A direct minimization of L with respect to x0, p leads to the so called initial value approach.

Initial Value Approach

The development of the initial value approach has a long history, [89, 95-98]. Again, one can

distinguish between local and global optimization methods. If global optimization procedures

are used for minimizing the likelihood, Eq. (5.4), the computational cost is rather high. On

the other hand local optimization algorithms are having a small domain in parameter space

for which the method converges to the global minimum. These problems are due to the

following difficulties:
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1. The optimization problem is highly non-linear such that local optimization routines

tend to converge to local minima.

2. The solution of the differential equation can become unstable such that the trajectory

diverges before the last time point tn is reached.

An efficient and robust method minimizing these effects therefore needs a modification of the

optimization scheme. One possibility of such a modification is multiple shooting.

Multiple Shooting

A detailed mathematical analysis of the multiple shooting method was performed by Bock [91-93].

Some applications of the method to measured data are, e.g., [99-103]. The basic idea of mul-

tiple shooting is that the parameter space is enlarged during the optimization process. This

offers the possibility to circumvent local minima because the procedure has more flexibility for

searching the parameter space. It is realized by subdividing the time interval I = [t0, tf ] into

nms < n subintervals Ik such that each interval contains at least one measurement. Each of

the intervals is assigned to an individual experiment having its own initial values (xk
0)k=1,...,nms

but sharing the same parameters p. The only difference in the cost function Eq. (5.4) is that

the trajectory x(ti;x0, p) is replaced by the interval dependent trajectory x(ti;x
k
0, p) for all

k = 1, . . . , nms. Since the over-all trajectory for each t ∈ I = I1 ∪ · · · ∪ Inms
is usually dis-

continuous at the joins of the subintervals, the fitted curve would not satisfy the smoothness

assumption of the model, Eq. (5.1). To enforce smoothness of the final trajectory, the opti-

mization is constrained such that all discontinuities are eventually removed which therefore

leads to a constrained non-linear optimization problem. This has the advantage that further

equality and inequality constraints, such as parameter bounds or conservation relations can

easily be implemented.

For each k = 1, . . . , nms let t+k = max{Ik}, t−k = min{Ik} and θk = (xk
0, p). The opti-

mization problem can then be formulated in the following manner:

L(θ1, . . . , θnms
) = 1

2

∑obs
j=1

∑nms

k=1

∑

{i:ti∈Ik}

(

Ra
ijk(θk)

)2
= minθ1,...,θnms

subject to

x(t+i ; θi) − x(t−i+1; θi+1) = 0 i = 1, . . . , nms − 1

Re
j(θ1, . . . , θnms

) = 0 j = 1, . . . , ne

Rg
k(θ1, . . . , θnms

) ≥ 0 k = 1, . . . , ng ,

(5.5)

where the continuity constraints are given at the first row of the constraints-part followed by

some optional constraints Re
j , R

g
k, to include, e.g., conservation laws or parameter bounds.

The cost function L(θ1, . . . , θnms
) is equivalent to Eq. (5.4) if the continuity constraints are

satisfied, hence

Ra
ijk(θk) =

Y
(j)
i − g(j)(x(ti; θk), p)

σij
.
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This non-linear programming type of problem can only be solved iteratively. We use the

generalized-quasi-Newton method for solving Eq. (5.5), where the cost function is expanded

up to the second order with respect to some initial guess θ0 = (θ0
1, . . . , θ

0
nms

). All contributions

depending on the second derivative of Ra
ijk are neglected afterwards. This is possible because

these contributions to the Hessian of L are vanishing asymptotically, n → ∞, if the model

assumptions are correct [93, 14]. From the quadratic approximation an update step for the

l-th iteration ∆θl = (∆θl
1, . . . ,∆θ

l
nms

) can be calculated by solving the linear programming

problem

1
2

∑obs
j=1

∑nms

k=1

∑

{i:ti∈Ik}

(

Ra
ijk(θ

l
k) + dθR

a
ijk(θ

l
k)∆θ

l
)2

= min∆θl

subject to

x(t+i ; θl
i) − x(t−i+1; θ

l
i+1) + dθi

x(t+i ; θl
i)∆θ

l
i − dθi+1

x(t−i+1; θ
l
i+1)∆θ

l
i+1 = 0

Re
j(θ

l) + dθR
e
j(θ

l) ∆θl = 0

Rg
k(θ

l) + dθR
g
k(θ

l) ∆θl ≥ 0 ,

(5.6)

where dθ denotes the derivative with respect to the parameters θ of the corresponding func-

tion. Setting θl+1 = θl + ∆θl, l = 1, . . . and iterating Eq. (5.6) until ∆θl ≈ 0, yields

a minimum of Eqs. (5.5) under the condition that all parameters are identifiable and the

constraints are not contradictory. These extra assumptions are necessary to fulfil the so

called Kuhn-Tucker conditions for the solvability of constrained, non-linear optimization

problems [104, 93]. In Sec. 5.4 a regularization approach is discussed for weakening these

restrictions if non-identifiable parameters are present.

In combination with multiple shooting the generalized-quasi-Newton approach has three

major advantages:

1. The optimization is sub-quadratically convergent.

2. A transformation of Eqs. (5.6) can be found such that the transformed equations are

numerically equivalent to the initial value approach, which is called condensing.

3. Due to the linearization of the continuity constraints, they do not have to be fulfilled

exactly after each iteration, but only at convergence. This allows discontinuous trajec-

tories during the optimization process, reducing the problem of local minima.

Properties 1. and 2. are yielding the desired speed of convergence whereas 3. is mainly

responsible for the stability of multiple-shooting. This is gained by the possibility that

the algorithm can circumvent local minima by allowing for discontinuous trajectories while

searching the minimum. The main disadvantage results from the linearization of the cost

function. It can easily happen that despite the update step ∆θl is pointing in the direction of

decreasing L the proposed step is too large. Such an overshooting is common to any simple

optimization procedures based on the local approximation of the cost function. A suitable

approach to cure this defect is to damp the proposed step, which is realized by relaxing the

update scheme to θl+1 = θl + λl∆θl for some λl ∈ (0, 1]. Both, the condensation algorithm

and the damping method are necessary for building up a fast and stable parameter estimator
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initialisation integration condensation

damping minimisationconverged ?

output

yes

no

Figure 5.1: The main program flow is shown above. Here, all stages of the algorithm are displayed

for ODEs. These procedures as well as the main program flow are the subject of following

section.

5.3. Detailed Description of Multiple Shooting

In the previous section the basic idea and some aspects of the performance of multiple shooting

was displayed without emphasizing any algorithmic details of the method. To fill this gap,

each module, starting from the initialization and ending in the output of the procedure is

discussed in detail. The different stages of the described method can be extracted from the

flow chart, Fig. 5.1. Beginning at the initialization, where e.g the multiple shooting mesh as

well as the initial values of each interval are set, a first trial trajectory has to be integrated.

Using these data, the linearized problem Eq. (5.6) can be formulated for the initial iteration

and condensed in order to accelerate the minimization process. To prevent overshooting, the

relaxation or damping of the obtained update step is done. Then one decides whether the

procedure is converged or a further iteration has to be taken into account by integrating a

new trail trajectory, applying a convergence criterion, such as ||∆θl|| ≈ 0 . After convergence,

output such as the parameter estimates, the estimates for the initial values as well as the

covariance matrix for a statistical analysis of the solution is provided. The first non-trivial

stage in the program flow is the integration of a trial trajectory.

Integration

The choice of the numerical integrator depends on the class of ODE given in Eq. (5.1) or its

numerical stability. There are four major groups to consider:

1. non-stiff ODEs
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2. stiff problems

3. delay differential equations

4. and differential algebraic equations.

For non-stiff ODEs standard numerical integrators such as the Runge-Kutta method [14] with

an appropriate step size control can be used. Whereas, if the solution of the ODE has at least

two different time scales which differ by orders of magnitude only stiff integrators are useful.

Especially in the case of multiple shooting we propose to use ODESSA [105, 106], because

the code is optimized for simultaneously solving the sensitivity equations. The significance of

the trajectory’s sensitivity is due to the linearization given in Eq. (5.6) and will be discussed

later. Delay differential equations (DDEs) cannot be represented by Eq. (5.1). Although

DDEs are not ordinary differential equations, it is possible to adapt multiple shooting to

this class of differential equations [107-109]. Since the right-hand-side of a DDE depends on

the time delayed trajectory or a delay distribution, specially suited integrators are needed.

A widely used DDE integrator is, e.g., RETARD [110], for a deeper discussion of DDEs we

refer to [111]. Differential algebraic equations (DAEs) are differential equations in which

algebraic relations between the state variables are present. In some cases the algebraic re-

lations can be formulated as equality constants and are thus treated like constrained ODEs.

Sometimes, this kind of separation is not possible such that special DAEs integrators have

to be considered [112].

Besides the choice of the integrator, the solution of the sensitivity equations has to be

obtained, because the Jacobian dθR
a
ijk(θ

0
k) or dθx(t

+
i ; θ0

i ) in Eq. (5.6) contains derivatives of

the trajectory with respect to the initial values and parameters:

∂x(t; θk)

∂xk(i)

0

and
∂x(t; θk)

∂p(j)
t ∈ Ik, k = 1, . . . , nms, i = 1, . . . , d, j = 1, . . . , np .

In order to calculate these quantities numerically, three approaches are feasible:

1. finite differences, called external differentiation [92, 93],

2. differentiation of the integration scheme, called internal differentiation [92, 93, 110],

3. and the simultaneous solution of the sensitivity equations [107].

The approximation of the derivatives by finite differences such as

∂x(t; θk)

∂xk(i)

0

≈ h−1 (x(t; θk + ei,x0
h) − x(t; θk))

for some h≪ 1 and ei,x0
being the i-th unit vector with respect to the initial value, leads to

numerical difficulties. Due to the numerical integration, the trajectory x(t; θk) is corrupted by

numerical noise. Since an adaptive integration step size is used, the maximal noise strength

can be predefined by some constant eps ≪ 1. Consequently, h cannot be chosen arbitrarily
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small without destabilizing the method. Arguments based on the expansion of x(t; θk) reveals

that the optimal choice is

h = O(
√
eps) , (5.7)

see e.g. [113]. Unfortunately, the constant of proportionality in Eq. (5.7) depends on the

second derivative and is therefore not known. Furthermore, a high integration accuracy is

needed for achieving a suitable derivative. Thus, external differentiation should be avoided

because of the unknown parameter h and the high computational cost.

Differentiating the integration scheme is considerably faster than external differentia-

tion [92, 93] and the problem of adjusting a parameter does not occur. On the other hand,

internal differentiation depends highly on the used integrator and has to be adapted whenever

one decides to try another integration scheme.

A more flexible and quite efficient approach is the simultaneous integration of the sensitiv-

ity equations. Consider again a trajectory x(t;x0, p) = x(t; θ) of Eq. (5.1) and the derivative

dθ, where the subscript indicates the variables to be differentiated. The time evolution of the

sensitivities S(t; θ) = dθx(t; θ) is then given by the solution of

d

dt
S(t; θ) = (dθf)(x(t; θ), t, p) + (dxf)(x(t; θ), t, p) S(t; θ)

S0 = S(t0; θ) =
(1d×d, 0d×np

)
, (5.8)

where 1d×d is the d × d-unity matrix, 0d×np
the d × np-matrix of zeros, and f is the right

hand side of the ODE as introduced in Eq. (5.1). Simultaneously integrating Eq. (5.1) and

Eq. (5.8) yields the trajectory as well as the desired sensitivities. It is further sufficient to

restrict the step size control to the main ODE, Eq. (5.1). Doing this, the speed and the accu-

racy is comparable to the internal differentiation. It is therefore a matter of taste using either

the internal differentiation or the simultaneous solution of the sensitivity equations, Eq. (5.8).

The procedure requires the calculation of derivatives like dpf, dxf , etc. Calculating such

derivatives by hand can be very time consuming and error-prone for big systems. Therefore

automatic differentiation should be applied. One possibility is to generate the derivatives at

runtime by using program packages like ADIFOR or ADOLC [114, 115]. Since the derivatives

have to be recalculated for every function evaluation, this approach slows down the method

significantly. The calculation of the Jacobians should therefore processed before the program

is executed which can be realized by using symbolic computation software, e.g., GinNaC [116].

Condensation

All information is now available for setting up Eq. (5.6). Suppose that hi = x(t+i ) − x(t−i+1),

∆θl
i = (∆xi

0,∆p) for all i = 1, . . . , nms−1 and because of (5.8), dxi+1
0
x(t−i+1) = 1, dpx(t

−
i+1) = 0

then the continuity constraints can be written as

hi + dxi
0
x(t+i ) ∆xi

0 + dpx(t
+
i ) ∆p = ∆xi+1

0 i = 1, . . . , nms − 1 . (5.9)
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According to Eq. (5.9) all initial value update steps at the multiple shooting intervals can

therefore be related to ∆x1
0 by backward elimination. Inserting the increments ∆x2

0, . . . ,∆x
nms

0

obtained by Eq. (5.9) into Eq. (5.6) yields a system to be solved only for ∆x1
0 and ∆p. Let

Ra be the n · nms · nobs-dimensional vector with components Ra
ijk and Re, Rg respectively,

the condensed problem is thus

||ua
1 + Ea

1 ∆x1
0 + P a

1 ∆p||2 = min∆x1
0,∆p

subject to

ue
1 + Ee

1 ∆x1
0 + P e

1 ∆p = 0

ug
1 + Eg

1 ∆x1
0 + P g

1 ∆p ≥ 0 ,

(5.10)

where u
a/e/g
1 and the matrices E

a/e/g
1 , P

a/e/g
1 are determined by the recursion [92, 93]:

Initialisation : u
a/e/g
nms

= Ra/e/g , E
a/e/g
nms

= dxnms
0

Ra/e/g , P
a/e/g
nms

= dpR
a/e/g

For i = nms, . . . , 2 : u
a/e/g
i−1 = u

a/e/g
i + E

a/e/g
i hi−1

E
a/e/g
i−1 = dxi−1

0
Ra/e/g + E

a/e/g
i dxi−1

0
hi−1

P
a/e/g
i−1 = P

a/e/g
i + E

a/e/g
i dphi−1 .

(5.11)

The condensation algorithm eliminates Eq. (5.9) such that problem Eq. (5.10) is of lower

dimension than the original, Eq. (5.6). Since Eq. (5.11) involves only matrix multiplications

the desired increase in speed is achieved by solving only the condensed problem. After the

solution of Eq. (5.10) is determined, the actual full update step ∆θl is obtained by the

recursion given in Eq. (5.9), which involves again only matrix multiplications.

Minimization

The solution of the linear programming problem Eq. (5.10) can be obtained by calculating

the generalized inverse G(θl) at θl. Since the condensation procedure removes the continuity

constraints by partially calculating the generalized inverse using the transformation given

above, we concentrate on the uncondensed problem Eq. (5.6) in the following. The general

inverse then solves

−dθR
a(θl)∆θl = Ra(θl) (5.12)

subject to all equality and inequality constraints of Eq. (5.6), where Ra is again the n · nms ·
nobs-dimensional vector of the actual residuals. Therefore, ∆θl = G(θl)Ra(θl) and by mul-

tiplying the system to solve, Eq. (5.12), with G(θl), we obtain −G(θl)dθR
a(θl) = 1. Note

that since Eq. (5.12) is over-determined the solution as constructed above only yields the

minimum quadratic norm solution, as desired. Moreover, the equality and violated inequal-

ity constraints are handled by projections onto the resulting sub-manifold using Lagrange

multipliers.

In practice, any appropriate minimization algorithm for solving constrained linear op-

timization problems, e.g., the routine E04NCF from the NAG library, LSEI [117] or, the

method of Stoer [118], can be used.
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Damping

Damping or relaxation of the update is essential for the stability of the whole method. To

judge if the proposed update step is descendant, some kind of level function has to be chosen.

Such a level function must share the same monotony properties of the cost function close to the

global minimum. In case of unconstrained problems, it is feasible to use the cost function L
directly, whereas some modifications are necessary for constrained problems, such as multiple

shooting. These modifications are due to the constraints entering the level function via

Lagrange multipliers. A possible level function is then

T (θ) = L(θ) +

nms+ne−1∑

i=1

αi |Re
i (θ)|

︸ ︷︷ ︸

equality constr.

+

ng∑

i=1

βi |min{0, Rg
i (θ)}|

︸ ︷︷ ︸

inequality constr.

, (5.13)

where αi and βi are bounded below by their corresponding Lagrange multipliers. Based on

this level function, a downhill procedure can always be constructed by some one-dimensional

line-search algorithm. According to [91-93] it turns out that the performance of using T (θ)

is rather bad. This inefficiency is due to

1. line-search has a high computational cost since a new trajectory has to be integrated

for each evaluation of Eq. (5.13) and

2. the local geometry of the minimization problem is not adapted to the level function,

leading to extremely small steps for badly conditioned problems.

To surmount these problems Bock [91-93] proposed to replace the line-search by some predictor-

corrector method and the level function is changed to include the local geometry. As prototype

for constructing such a level function, we consider the following ideal level function

TN,θ∗(θ) = ||G(θ∗)Ra(θ)||2 , (5.14)

where θ∗ is the minimum of the cost function L, G is the generalized inverse as defined

further above and Ra the vector of residuals at the corresponding point in parameter space.

Expanding Ra(θ) about θ∗ up to first order and substituting the obtained expression into

Eq. (5.14) yields TN,θ∗(θ) = ||G(θ∗)(Ra(θ∗) + dθR
a(θ∗)(θ − θ∗) +O(||θ − θ∗||2))||2. Since we

assume that the Kuhn-Tucker conditions are fulfilled, as described in Sec. 5.2, G(θ∗)Ra(θ∗) =

0 and by the properties of the generalized inverse −G(θl)dθR
a(θl) = 1, we obtain

TN,θ∗(θ) = ||θ − θ∗||2 +O(||θ − θ∗||3) .

In conclusion, the ideal level function TN,θ∗ measures the squared Euclidean distance to

the optimum up to third order. Therefore, TN,θ∗ is in vicinity of θ∗ a distance measure

in a Euclidean space which does not depend on application specific geometric properties

of the parameter ”landscape”. Moreover, it shares the same monotony properties of the

cost function close to the global minimum, as desired. Unfortunately, the knowledge of the
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minimum θ∗ is needed for constructing TN,θ∗ . In order to obtain an applicable level function

which has similar properties as TN,θ∗ , we replace θ∗ by θl. The resulting level function

T l
N (θ) = ||G(θl)Ra(θ)||2 (5.15)

is called natural level function which provides an efficient criterion for determining the relax-

ation coefficient λl for the l-th iteration.

Again, finding an appropriate λl for which the minimization scheme is descendant involves

some kind of line-search to guarantee that TN (θl + λl∆θl) < TN (θl) is satisfied. Since the

evaluation of the natural level function involves the integration of the trajectory and in

addition the solution of the whole minimization procedure, calculating TN is quite expensive.

To prevent line-search, an upper bound for the level function evaluated at the relaxed update

step TN (θl + λl∆θl) can be derived, as shown in [93] and in the following. Provided that

the second derivative d2
θR

a for the vector of residuals Ra exists in a sufficiently large domain

containing θl, the following estimate holds:

T l
N (θl + λl∆θl) ≤

(

1 − λl +
λl2

2
ω(θl, λl)

)2

T l
N (θl) , (5.16)

where for each λl ∈ (0, 1] the function ω is given by

ω(θl, λl) = sup
s∈(0,λl]

{

||G(θl)
(
dθR

a(θl + s∆θl) − dθR
a(θl)

)
∆θl||

s||∆θl||2

}

<∞ . (5.17)

Therefore, on the basis of T l
N a descendent step can always be found, if λl is correctly adjusted.

In order show Eq. (5.16), consider the following estimates for α =
√

T l
N (θl + λl∆l) − (1 −

λl)
√

T l
N (θl):

α ≤
∣
∣
∣
∣

√

T l
N (θl + λl∆l) − (1 − λl)

√

T l
N (θl)

∣
∣
∣
∣

≤
∣
∣
∣
∣

∣
∣
∣
∣
G(θl)Ra(θl + λl∆θl) − (1 − λl)G(θl)Ra(θl)

∣
∣
∣
∣

∣
∣
∣
∣
. (5.18)

Since, G(θl)Ra(θl) = ∆θl, and inserting −G(θl)dθR
a(θl) = 1 into Eq. (5.18), we arrive at

α ≤
∣
∣
∣
∣

∣
∣
∣
∣
G(θl)

[

Ra(θl + λl∆θl) −Ra(θl) − λldθR
a(θl)∆θl

]
∣
∣
∣
∣

∣
∣
∣
∣

=

∣
∣
∣
∣

∣
∣
∣
∣

∫ λl

0

G(θl)
{
dθR

a(θl + s∆θl) − dθR
a(θl)

}
∆θl

s||∆θl||2 s ||∆θl||
√

T l
N (θl) ds

∣
∣
∣
∣

∣
∣
∣
∣

≤ λl2

2
ω(θl, λl) ||∆θl||

√

T l
N (θl) ,

which proves Eq. (5.16).
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Now, for some arbitrarily chosen η ∈ (0, 2], every λl ∈ (0, λ∗] yields a descending step

TN (θl + λl∆θl) < TN (θl), where λ∗ can be obtained from the solution of

λ∗ = min

{

1,
η

ω(θl, λ∗) ||∆θl||

}

. (5.19)

This is because λl ≤ λ∗ ≤ η (ω(θl, λ∗)||∆θl||)−1 and by using Eq. (5.16)

T l
N (θl + λl∆θl) ≤

(

1 − λl +
λl

2
η

)2

T l
N (θl)

=
(

1 − λl (1 − η/2)
)2
T l

N (θl) < T l
N (θl) .

For a given η ∈ (0, 2] the maximal relaxation parameter leading to a descendant step is

therefore λ∗. Moreover, if the relaxation coefficient is chosen to be λl ∈ [λ∗(η1), λ
∗(η2)], for

0 < η1 ≤ η2 < 2, the damped generalized-quasi-Newton method converges to a full-step

procedure, λ = 1, when the parameters are approaching the minimum. This requires the

local identifiability of all parameters and the boundedness of the second derivative d2
θR

a in

the vicinity of the minimum. To show this property of the damping algorithm suppose that

for all initial guesses θ0 ∈ D, where D is a convex set, the undamped generalized quasi-

Newton converges locally to a θ∗ which minimizes L. Moreover, let the norm of the second

derivative d2
θR

a be bounded by ω̃ on D. Then, for all s ∈ [0, 1]

∣
∣
∣
∣G(θl)

(

dθR
a(θl + s∆θl) − dθR

a(θ)
)

∆θl
∣
∣
∣
∣ =

∣
∣
∣
∣G(θl)

∫ s

0
d2

θR
a(θl + t∆θl)(∆θl,∆θl) dt

∣
∣
∣
∣

≤ ||G(θl)|| sup
x∈D

∣
∣
∣
∣d2

θR
a(x)

∣
∣
∣
∣ s ||∆θl||2

≤ ω̃ s ||∆θl||2 ,

by the continuity of G on D. According to Eq. (5.17), ω(θl, λl) ≤ ω̃ < ∞ and therefore

ω(θl, λl) ||∆θl|| ≤ ω̃ ||∆θl|| → 0 for l → ∞. Due to Eq. (5.19), the maximal possible damping

parameter leading to descending quasi-Newton steps converges to one.

Since ω(θl, λl) is a priori not known a suitable estimation or approximation is necessary.

Demanding the coincidence of the estimator with Eq. (5.17) in the limit λl → 0 automatically

guarantees an appropriate relaxation scheme whenever a massive damping is needed. The

estimator

ω̂(θl, λl) = 2
||G(θl)R(θl + λl∆θ) − (1 − λl)∆θl||

||λl∆θl||2 , (5.20)

satisfies this desired property [93]. Replacing ω with ω̂ in Eq. (5.19), a predictor-corrector

procedure can be constructed to find a suitable 0 < λl ≤ λ∗. Assuming that ω̂(θl−1, λl−1)

from the previous Gauss-Newton iteration is approximately constant the damping parameter

for the actual iteration can be determined by

λl = min

{

1,
η0

ω̂(θl−1, λl−1) ||∆θl||

}

, (5.21)
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for some 0 < η0 < 2. If the assumption is violated such that decreasing of the method cannot

be guaranteed, ω̂ has to be recalculated from Eq. (5.20) but now using λl, given in Eq. (5.21).

This procedure has to be repeated until a suitable relaxation coefficient has been obtained.

For some 0 < η0 < η2 < 2, τ ∈ [0.5, 1] and 0 < τmin ≪ 1, the damping procedure can be

described by the following algorithm:

1. Set j = 0 and calculate the predictor µ0 = η0/
(
ω̂(θl−1, G, λl−1) ||∆θl||

)
.

2. The predicted relaxation step is then given by

λpred
j =







1 τ < µj

µj τmin ≤ µj ≤ τ

τmin µj < τmin

.

3. If ω̂(θl, λpred
j ) ||∆θl||λpred

j ≤ η2 then the proposed step λpred
j = λl yields a descending

update and is therefore accepted. Whereas, if the above statement is violated, j = j+1

and

4. the prediction λpred
j−1 is corrected by

µj =
η0

ω̂(θl, λpred
j−1 ) ||∆θl||

. (5.22)

5. Step 2, 3 and 4 are repeated until a sufficient relaxation coefficient λl is found or the

minimal step length τmin is reached.

In order to ensure the numerical stability of the damping algorithm, a predefined minimal

relaxation τmin must be provided. An upper threshold τ is also given, which determines

the transition from a damped procedure to a full step approach, λl = 1. Finally, η0, η2 are

controlling the correction (step 4). Inserting ω̂(θl, λpred
j−1 ) ||∆θl||λpred

j−1 > η2 into Eq. (5.22)

and suppose that µj > τmin, we have λpred
j < (η0/η2) λ

pred
j−1 . Thus, the minimal correction

factor is given by the ratio η0/η2. A suitable choice of these control parameters is, e.g.,

τmin = 0.01, τ = 0.5, η0 = 1 and η2 = 1.8. Since there is no information about ω̂ for the first

Gauss-Newton iteration, one can chose ω̂ such that λ1 attains the lower bound τmin.

The described damping algorithm reflects the advantageous geometrical properties of

the natural level function. Furthermore, the correction step Eq. (5.22) is rarely activated

such that in most of the cases only one extra integration is needed to achieve an appropriate

damping. Unfortunately, there are no rigorous proofs that this damping strategy always yields

a descending method, which is due to the approximation of ω. But the algorithm provides

excellent results in practice, we can therefore highly encourage the use of this damping scheme.

Statistical Analysis

Beside the pure estimation of parameters and initial values statistical information such as

standard errors or confidence intervals for these values are essential in practice. In the case
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of maximum likelihood estimators the statistical properties can be derived in the asymptotic

limit. Under mild conditions, the estimator is converging to the ”true” parameters and the

parameters are normally distributed [119]. The covariance matrix of the estimates can be

obtained from the Fisher information matrix which can be approximated by

IF(θ̂)ij =
∂2L(θ̂)

∂θi∂θj
, (5.23)

where L is the negative logarithm of the likelihood. Inverting IF(θ̂) then yields the covariance

matrix C for the estimated parameters θ̂.

The described procedure for estimating parameters in ODEs is a maximum likelihood

approach, such that Eq. (5.23) provides a sufficient approximation of C−1. Most of the

minimizers, e.g. [117], simultaneously calculate this covariance matrix within the quadratic

approximation discussed in Sec. 5.2.

All described stages, integration, condensation, etc. define the basic algorithm of multiple

shooting which are valid in case of identifiable problems. As explained, the restriction of hav-

ing only identifiable parameters is of great importance for the convergence of the algorithm,

the damping strategy and the statistical analysis. To judge if the system of interest con-

tains only identifiable parameters several methods can be applied, e.g [120-123]. Since these

methods can involve extremely tedious calculations even for small models, it is often a priori

not feasible to decide whether the system is identifiable. Alternatively, the multiple shooting

method can be modified to obtain parameter estimates even if some parameters can not be

identified. A possible implementation of such a strategy is described in the next section.

5.4. Regularization in Case of Non-Identifiable Parameters

If some parameters are not identifiable in a certain domain of the parameter space, the matrix

P a
1 of the condensed system Eq. (5.10) does not have its full rank whenever the algorithm

tries to enter this region. The central idea of the regularization approach is to manipulate the

estimation process such that the modified matrix P̃ a
1 attains its full rank. The manipulation

we propose can be regarded as heavily damp a specific parameter set such that they appear

to be fixed.

A singular value decomposition [14] of P a
1 = U diag(w1, . . . , wnp

) V T is calculated first

to determine if P a
1 has its full rank. Both matrices U , V T are orthogonal, V T is the trans-

posed matrix of V , and diag(w1, . . . , wnp
) is a diagonal matrix containing the positive (by

convention) singular values w1, . . . , wnp
. It this further assumed that the singular values are

in descending order w1 ≥ · · · ≥ wnp
. The rank criterion is said to be violated if the condition

number wnp
/w1 is below a given threshold 0 < ǫc ≪ 1. Introducing a threshold is necessary

because the numerical error prevents the condition number to vanish exactly. Therefore, the

value of ǫc should be close to the machine accuracy. In order to judge, which parameters

contribute to the violation of the rank criterion, the set Mc = {i : wnp
/wi ≤ ǫc} of all
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singular directions is regarded. Let

Πc =
∑

i∈Mc

ei ⊗ eTi

be the projection onto the space of all singular directions, the regularization can be realized

by enlarging the corresponding singular values. For this reason, some ∆ ≫ w1 has to be

chosen. The regularized matrix P̃ a
1 is the given by

P̃ a
1 = U

(
diag(w1, . . . , wnp

) + ∆ Πc

)
V T . (5.24)

For a well adjusted value of ∆ all parameters contributing to the singular directions are

almost kept fixed if P a
1 is replaced by P̃ a

1 in Eq. (5.10). Since the described regularization

method is similar to the classical damping procedure of Levenberg and Marquardt [124, 125],

regularization can also be regarded as an individual damping of ill-conditioned directions. If

the regularization is turned off at the last iteration, the singular directions of the covariance

matrix can help to find the unidentifiable parameters. Note that if some initial values are

not identifiable, the same procedure can also be applied to the matrix Ea
1 in Eq. (5.10).

5.5. Simulation Study

To display the performance of multiple shooting a simulation study is carried out in the

following. To that end, a trajectory from a model describing oscillations in a calcium signalling

pathway is chosen. Calcium ions are an important second messager substance in eucaryotic

cells. Thereby, Ca2+ is a substantial part of the cellular information processing system.

It has been observed that the concentration of the cytoplasmatic calcium ions may exhibit

oscillations, see e.g. [126]. A mathematical model of these oscillations is developed in [127]

which shows for a specific set of parameters complex and even chaotic behavior. The main

stages of the calcium signalling pathway are activation of the phospolipase C (PLC) enzyme

by the activated Gα unit of a G-protein linked receptor. This enzyme is attached to the plasma

membrane and itself catalyzes the hydrolysis of the membrane lipid phosphatidyl inositol-4,5-

bisphosphate to build inositol-1,4,5-trisphosphate (IP3) and diacylglycerol. Then, IP3 may

bind to specific ion-channels in the endoplasmatic reticulum which lead to a massive out-flux

of Ca2+ from intra-cellular stores.

For the following simulation study we used the most complex mathematical model pre-

sented in [127]. This model consists of four state variables representing the concentrations of:

1) the active Gα unit, G∗
α, 2) the active PLC, PLC∗, 3) the free calcium in the cytoplasm,

Cacyt, and 4) the calcium in the endoplasmatic reticulum, Caer. For sake of simplicity, the

dynamics of the IP3 is assumed to follow the dynamics of the active PLC. The dynamics of

the remaining state variables is then given by the following differential equation:
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(b) after 8 iterations
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Figure 5.2: Identification of the presented calcium signalling pathway using multiple shooting. For sake

of clearness, three snapshots of the identification procedure are shown only for the state variables G∗

α, and

Cacyt. Due to the large amount of multiple shooting intervals the initial trajectory is highly discontinuous

(a). After 8 iterations the trajectory is significantly smoother (b). Since the discontinuities are removed by

the algorithm, the trajectory turns out to be continuous at convergence (c).

d

dt
G∗

α = k1 + k2 G
∗
α − k3 PLC

∗ G∗
α

G∗
α +Km1

− k4 Cacyt
G∗

α

G∗
α +Km2

d

dt
PLC∗ = k5 G

∗
α − k6

PLC∗

PLC∗ +Km3

d

dt
Cacyt = k7 PLC

∗ Cacyt
Caer

Caer +Km4
+ k8 PLC

∗ + k9 G
∗
α

− k10
Cacyt

Cacyt +Km5
− k11

Cacyt

Cacyt +Km6

d

dt
Caer = −k7 PLC

∗ Cacyt
Caer

Caer +Km4
+ k11

Cacyt

Cacyt +Km6
, (5.25)

where the 17 parameters are chosen in the following manner: k1 = 0.09, k2 = 2, k3 = 1.27,

k4 = 3.73, k5 = 1.27, k6 = 32.24, k7 = 2, k8 = 0.05, k9 = 13.58, k10 = 153, k11 = 4.85,

Km1 = 0.19, Km2 = 0.73, Km3 = 29.09, Km4 = 2.67, Km5 = 0.16, and Km6 = 0.05. For

this specific parameterization the solution of Eq. (5.25) shows a limit cycle. As initial values

we use G∗
α(0) = 0.12, PLC∗(0) = 0.31, Cacyt(0) = 0.0058, and Caer(0) = 4.3. As sampling
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single shooting multiple shooting

convergent fits 4% 49%

needed computational load (44 ± 16) s (48 ± 58 ) s

Table 5.1: A comparison of multiple and single shooting (initial value approach) in terms of stability,

convergence to the global optimum and computational load. The results are obtained from 250 runs using a

randomly generated initial guess for each sample. For sake of comparability the same initial guess is used for

single and multiple shooting within the sample. For the simulations a computer with a 2.6 GHz Pentium 4

processor is used.

time domain we choose the interval [0, 20] and the sampling interval is set to ∆t = 0.1. This

leads to 200 data points. We chose a biological reasonable noise model where the standard

deviation of each observed variable is proportional to the concentration of its noise free state.

This leads to an overall mean noise-to-signal ratio of 6.5%.

For comparing multiple shooting with single shooting we aim to estimate the parameters

k1, · · · , k11. The initial guesses of these parameters are randomly selected from an uniform

distribution over [0, 1]. Note, that some of the true parameters , e.g., k5, k6, and k10 are

far of this interval of initial guesses for the parameters, rendering the estimate a difficult

one. A snapshot of the initial trajectory, after the 8. multiple shooting iteration and the

final trajectory is shown in Fig. 5.2. Here, 17 multiple shooting intervals are used, leading

to a rather rough initial trajectory, Fig. 5.2a. These discontinuities are still present after

eight iterations, Fig. 5.2b and are completely removed at convergence, Fig. 5.2c. To compare

the performance of multiple shooting to the initial value approach, a simulation study has

been carried out. To achieve the most comparable results, a sample of 250 initial guesses

are randomly selected. The performance for both, multiple shooting and the initial value

approach is compared in terms of stability and computational load using the same initial guess

for each sample. The results are summarized in Tab. 5.1. These results clearly supports the

statements about the superior stability of multiple shooting, since only 4% of fits converged to

the global optimum for the initial value approach whereas 49% for multiple shooting. If one

compares the ratio of these values, it turns out that about twelve times as many convergent

fits converged to the global optimum for multiple shooting than for the initial value approach.

In terms of computational load, both methods are showing basically the same performance.

Therefore, for this particular problem, the condensation algorithm is highly efficient since the

condensed problem is computationally equivalent to the initial value problem as discussed in

Sec. 5.3. In addition, the high standard deviation of the computational load for both methods

indicates that the needed computational effort to find an optimum of the cost function highly

depends on the used initial guess.
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Figure 5.3: The core module of the PI3-Kinase Akt signaling pathway. Binding of the p85/p110 heterodimer

to the phosphorylated tyrosine 479 of the Epo-receptor (EpoR) activates the kinase activity of PI3K. For this

reaction the assumed binding rate is k1 and the degradation of the EpoR-PI3K complex is assumed to happen

at a rate g1. Then, the conversion of inositol-4,5-bisphosphates (PIP2) to inositol-3,4,5-trisphosphates (PIP3)

located in the plasma membrane takes place with rate k2. PIP3 provides docking sites for Akt and its upstream

kinases, thereby placing the them in close proximity and enabling the phosphorylation and activation of Akt

with rate k3. PIP3 is removed by inositol phosphatases with rate g2, Akt is unactivated by cytosolic protein

phosphatases with rate g3.

5.6. Application to Biochemical Data

As an application of the described method to measured data, the phosphoinositide 3-kinase

(PI3K) signal transduction pathway is chosen. Before discussing this pathway in detail, a

few biochemical concepts are introduced. Phosphorylation is a process which alters the state

of a protein. This is triggered by a type of enzyme, called kinase, which transfers phosphate

groups (PO4) to the target protein. A phosphorylated protein can be regarded as being active

in a sense that it may alter the state of other proteins downstream the signalling pathway.

In order to remove the phosphate groups from an activated protein, a further enzyme is

consulted, the phosphatase. The phosphatase therefore turns the protein from the activated

state to the unactivated state.

The PI3K pathway is activated by a large number of cell surface receptors and plays

an important rôle in tumor-genesis [128, 129]. However, if the PI3K is activated by the

hematopoietic cytokine receptor EpoR, its function is important for the proliferation (cell

devision) and differentiation of blood progenitor cells. Ligand binding leads to the activa-
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tion of the Epo-receptor by phosphorylation, namely attaching phosphate to specific sites

of the receptor. This allows the binding of the PI3K p85/p110 heterodimer and thereby

activates the PI3 kinase. Activated PI3 kinase proteins then generate 3,4,5 phosphorylated

phosphatidylinositols (PIP3) out of 4,5 phosphorylated phosphatidylinositols (PIP2), both

are attached to the plasma membrane of the cell. PIP3 provides a specific docking site, such

that other compatible proteins can be activated. Especially, the serine/theonine kinase Akt

and its upstream kinases can bind to this site which leads to the activation of Akt to relay

the signal further downwards which alters the cell’s metabolism, transcriptional activity, etc.

A sketch of the PI3K signalling pathway is shown in Fig. 5.3. More detailed information

about the PI3K pathway is, e.g., presented in [130, 131].

The presented data were obtained using cultivated BaF3 cells, where no Epo stimuli

have been applied for a time period of five hours prior the time course experiments. This is

necessary to study the reaction of the pathway when a stimulus is applied, since the entire

pathway is ”switched off” before starting the experiments. At 20 distinct time points after

the stimulus, spanning one hour in total, about 107 cells are removed from the population.

To terminate each cellular reaction a lysis buffer was applied to these cells, thereby providing

a snapshot of the cell’s state at each instant of time. Then, up to an unknown scaling factor

the concentration of the activated PI3K, the activated Akt, and the state of the Epo-receptor

is measured using quantitative imunoblotting, a method which is based on electrophoresis.

Unfortunately, the other components of the PI3K pathway cannot be measured using these

experiments. Since the pathway depicted by Fig. 5.3 contains no feed-back loop, the modelling

procedure can be divided into two steps. The first step consists on the modelling of the

activated PI3K by the receptor and the second step leads from the activated PI3K to the

phosphorylation of Akt.

Focussing on first step of the pathway, where the time course of receptor activity is

denoted by EpoR(t), and the concentration of the active PI3 kinase by aPI3K(t). Since the

conversion of inactive PI3K to active is controlled by the receptor activity, the most simple

model is given by

d

dt
PI3K(t) = −k1 EpoR(t) PI3K(t) + g1 aPI3K(t)

d

dt
aPI3K(t) = k1 EpoR(t) PI3K(t) − g1 aPI3K(t) , (5.26)

where k1 is the activation rate of the PI3K, g1 the degradation rate and due to the prepara-

tion of the cells aPI3K(0) = 0. Since the measurements of EpoR are rather noisy as shown

in Fig. 5.4a, we decided to model receptor activity with EpoR(t) = A0 (1 − e−λ1t) e−λ2t,

which yields an adequate description of the data. The estimate of the parameters in this

function are A0 = 0.86, λ1 = 0.33 min−1, and λ2 = 0.007 min−1, using a standard non-linear

fitting procedure, see e.g. [14]. Apart from the unknown scaling parameter in both, EpoR

and aPI3K all parameters are identifiable if ideal measurements would have been available.

But according to Fig. 5.4b, the data are strongly corrupted by noise, resulting into parameter

identifiability problems. To find all unidentifiable parameters the regularization procedure

described in Sec. 5.4 is consulted. It turns out that fixing the unactivated PI3K to 1 finally

yields an identifiable parameter estimation problem. For the remaining parameters we obtain
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Figure 5.4: Modelling of the activation of the PI3 kinase (PI3K). (a) Since the noise on the measurements

for the receptor activity (pEpoR) is rather high, its time course is approximated by pEpoR(t) = A0 (1 −

e−λ1t) e−λ2t (red curve). As shown, this expression adequately describes the data and is thus suitable as

input for Eq. 5.26. (b) Here, the red curve graphs the best fit of the model based on Eq. 5.26, yielding that

the model is in accordance with the measurements. Moreover, a comparison of the receptor activity EpoR

with the concentration of the activated Pi3K is shown by the inset graph in (a). Note that pEpoR is rescaled

to compare both time courses. Up to 20 min the aPI3K parallels the time course of EpoR, where the decay

of the aPI3K is slightly slower than the receptor signal.

k1 = 2 ± 1.41 min−1 and g1 = 0.98 ± 0.74 min−1. In fact, the obtained fit is consistent with

the measurements, as shown by the red curve in Fig. 5.4b. A comparison of the rescaled

receptor activity EpoR(t) with aPI3K(t) is shown in the inset graph of Fig. 5.4a. Up to

20 min the aPI3K parallels the time course of EpoR, where decay of the aPI3K is slightly

slower than the receptor signal.

The remaining components of the signalling pathway can be modeled using a succession

of two ODE subsystems which are equivalent to Eq. (5.26). In addition, this type of ODE

can be solved analytically which allows a mathematical analysis helping to decide whether

current picture of the pathway as shown in Fig. 5.3 is compatible with the measurements or

not. Let us therefore represent Eq. (5.26) by the general expression

d

dt
x(t) = −α f(t) x(t) + β y(t)

d

dt
y(t) = α f(t) x(t) − β y(t) . (5.27)

Here, PI3K is replaced by x, aPI3K by y, EpoR by a positive function f , k1 by α, and g1 by

β. The initial values are chosen to satisfy x(0) = x0 > 0 and y(0) = 0. Since x(t)+ y(t) = x0

is conserved, Eq. (5.27) can be uncoupled which yields ẏ = αx0 f(t) − (α f(t) + β)y for the

output variable y(t). This equation has the solution

y(t) = αx0

∫ t

0
f(s) exp

(

− β (t− s) − α

∫ t

s
f(τ) dτ

)

ds . (5.28)
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In order to give a qualitative understanding of the dynamics obtained from Eq. 5.28, four

different regimes of the ratio β/α are discussed in the following. Let us further assume that

the time domain of interest is restricted to [0, tmax]. We observe:

1. β/α≫ t−1
max

∫ tmax

0 f(τ) dτ :

y(t) =
α

β
x0

∫ t

0
f(s) β e−β(t−s)

︸ ︷︷ ︸

≈δ(t−s)

exp

(

− α

∫ t

s
f(τ) dτ

)

ds ≈ α

β
x0 f(t) .

Therefore, y(t) approximately follows the dynamics of f(t).

2. β/α ≪ t−1
max

∫ tmax

0 f(τ) dτ : The slowly varying term e−β(t−s) can approximated by

e−βt:

y(t) ≈ αx0 e
−βt

∫ t

0
f(s) e−α

R

t

s
f(τ) dτ ds = x0 e

−βt

∫ t

0

d

ds
e−α

R

t

s
f(τ) dτ ds

= x0 e
−βt

(

1 − e−α
R

t

0
f(τ) dτ

)

.

Since α t−1
max

∫ tmax

0 f(τ) dτ is large compared with β, y(t) is rushing up quickly which

is followed by a slow decay.

3. β/α ≈ t−1
max

∫ tmax

0 f(τ) dτ and β ≫ 1: For this regime, α
∫ t
s f(τ) dτ can approximated

by β(t− s), leading to

y(t) ≈ αx0

∫ t

0
f(s) e−2β(t−s) ds ≈ α

2β
x0 f(t) ,

where a similar approximation as in 1. has been used. Again, the dynamics of y(t)

approximately follows f(t).

4. β/α ≈ t−1
max

∫ tmax

0 f(τ) dτ and β ≪ 1: By similar approximations than used in case 2

and 3, we have

y(t) ≈ αx0

∫ t

0
f(s) e−2β(t−s) ds ≈ αx0 e

−2βt

∫ t

0
f(s) ds .

The long term limiting factor is e−2βt leading to a slow decay similar to case 2.

Motivated by the slow decay of EpoR(t), consider that f(t) also decays slowly. Then, no

acceleration in the decay of y(t) can be expected if either of the discussed cases are regarded.

Moreover, let β/α ≈ t−1
max

∫ tmax

0 f(τ) dτ , thus y(t) is still related to the convolution of f(t)

with e−2βt and therefore an acceleration of the decay cannot be achieved, a result which is

independent of β.

Let us return to the PI3K pathway. The second step consists of two successive reactions,

the conversion of PIP2 to PIP3 and the activation of Akt. As it can be seen in Fig. 5.3, Akt
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Figure 5.5: Shown is the time course of the phosphorylated Akt and two attempts to describe the data by a

mathematical model. (a) The best fit of the model given by Eq. (5.29) to the measurements. As expected by an

analysis of the system’s equations the model cannot adequately describe the data. (b) However, the extension

of the model given by Eq. (5.30) yields an almost prefect description of the data. Here, the degradation of

PIP3 to PIP2 is driven by the time delayed Epo-receptor activity.

itself and the Ser 473 kinase bind to a specific binding site of PIP3. Phosphorylation of Akt

can only happen if the PIP3-Akt and PIP3-Ser 473 kinase complexes are in proximity, which

is the rate limiting factor for the activation of Akt. According to [130] Akt and the Ser 473

kinase accumulates at the plasma membrane, therefore the binding of PIP3 to Akt and to

the Ser 473 kinase can safely omitted. The activation of Akt is thus proportional to PIP 2
3 (t),

where PIP3(t) denotes the concentration of PIP3. Let us further denote the concentration of

PIP2 by PIP2, the inactive Akt by Akt and the phosphorylated (active) Akt by pAkt. The

reaction scheme is then translated into an ODE by

d

dt
PIP2(t) = −k2 aPI3K(t) PIP2(t) + g2 PIP3(t)

d

dt
PIP3(t) = k2 aPI3K(t) PIP2(t) − g2 PIP3(t)

d

dt
Akt(t) = −k3 PIP

2
3 (t) Akt(t) + g3 pAkt(t)

d

dt
pAkt(t) = k3 PIP

2
3 (t) Akt(t) − g3 pAkt(t) , (5.29)

where k2, k3, and g2, g3 are the rate constants for activation and degradation respectively.

Due to preparation of the cells the initial concentrations of PIP3 and the activated Akt and

are again zero. In fact, Eq. (5.29) is equivalent to the connection of two systems described

by Eq. (5.27) in series. This allows a mathematical analysis for Eq. (5.29) to decide whether

the model is capable to describe the data. The concentration of the phosphorylated Akt is

shown in Fig. 5.5. It can be seen that this concentration quickly increases within the first

10 min after the stimulus but also quickly decreases afterward. In contrast, the concentration

of active PI3K only decreases slowly after 10 min, as shown in Fig. 5.4b on p. 68. Since any of

the analyzed cases of Eq. (5.28) does not yield and accelerated decay with respect to the input
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function, Eq. (5.29) cannot describe the dynamical behavior of the measurements. This is

confirmed by the application of the fitting procedure. As shown in Fig. 5.5a the best fit using

Eq. (5.29) does not reproduce the fast decay of aAkt after 10 min. Note that all parameters

and remaining initial conditions cannot be identified having only one observed component.

Again, the regularization method is used to find all unidentifiable parameters. This leads

to the fixation of PIP2(0) and k3 to 1 for the fitting process. However, the estimates of

the remaining parameters are no longer of great importance since they scale with the actual

values of PIP2(0) and k3 in a non-trivial way.

The degradation of PIP3 to PIP2 may be influenced by other proteins such as SHIP1,

SHIP2, and PTEN [130, 132]. Assuming that these processes itself are regulated by the Epo-

receptor, the model is extended by replacing g2 with g2 EpoR(t − τ), where EpoR(t − τ) is

the time delayed receptor activity which is assumed to vanish for all t < τ . The introduction

of the delay τ ≥ 0 can be regarded as an approximation to unknown processes which are

responsible for the accelerated decay of pAkt. The complete ODE of the modified model

therefore yields

d

dt
PIP2(t) = −k2 aPI3K(t) PIP2(t) + g2 EpoR(t− τ) PIP3(t)

d

dt
PIP3(t) = k2 aPI3K(t) PIP2(t) − g2 EpoR(t− τ) PIP3(t)

d

dt
Akt(t) = −k3 PIP

2
3 (t) Akt(t) + g3 pAkt(t)

d

dt
pAkt(t) = k3 PIP

2
3 (t) Akt(t) − g3 pAkt(t) , (5.30)

Figure 5.5b shows the fit of Eq. (5.30) to the measurements. From this fit it can be concluded

that the model extension leads to a model which is able to describe the data. The estimated

delay is τ = 11.36 ± 2.84 min. Such a large delay may arise by either spatial effects due

or by a signalling cascade used to regulate the degradation of PIP3 to PIP2 rather than a

single signalling protein. The first alternative is not likely since all processes are taking place

in proximity of the receptor. We can therefore conclude that a multi-component reaction

scheme is needed for this feed-forward loop, which can only be identified with the aid of

further experiments.

5.7. Conclusion

In this Chapter, the parameter estimation procedure for ordinary differential equations, mul-

tiple shooting, is described in detail. Apart from other attempts of estimating parameters in

differential equations, this procedure does not heavily suffer from the attraction to local min-

ima and the speed of convergence is considerably higher than global optimization methods

can achieve. Besides the general idea of embedding the problem into a higher dimensional

parameter space, the speed of convergence as well as the stability can only be achieved by

sophisticated numerical methods. Especially the condensation algorithm and the damping

strategy can be considered as landmarks of this issue. These aspects are thoroughly presented
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within the remaining issues of the method, such as integration of the ODE, minimization and

the statistical analysis of the estimates. Identifiability of the parameters can be regarded

as central assumption for a successful operation of most of the numerical components. A

regularization procedure to weaken this assumption is included to the discussion of multi-

ple shooting. The regularization can further help to remove all unidentifiable parameters as

demonstrated in Sec. 5.6. In addition, a simulation study using a recently proposed model of a

cellular process of calcium signalling demonstrates that multiple shooting clearly outperforms

the initial value approach.

Moreover, an extension of multiple shooting to partial differential equations is also pos-

sible, [133, 134]. Additionally, the method can also be used to find an optimal experimental

design, see e.g. [135, 136]. This broad applicability of the multiple shooting method marks

the relevance of such a tool for a vast range of applied sciences and engineering. Especially

for estimating parameters in complex reaction networks, as they often appear in systems

biology, multiple shooting can substantially assist the modelling procedure. This is under-

lined by the application of the proposed method to an important signalling pathway, the PI

kinase. Paired with a mathematical analysis of a model obtained from the current biological

knowledge of the PI kinase, the method substantially helped to identify a feed-forward loop

which is needed to obtain an adequate model.



6
Quantifying the Substitution Rate

Variation Across Mammalian Genomes

6.1. Introduction

The structure of the DNA was discovered by the biologist J. Watson and the physicist F. Crick

in 1953. They found that the four bases of the DNA, guanine, cytosine, thymine, and adenine

are organized in a double helix structure consisting of two strands. Each base on one strand

can only bind to a complementary base on the other strand, where guanine is complementary

to cytosine and thymine is complementary to adenine. The genetic information of each life

form is encoded in the DNA which is itself partitioned to several chromosomes, e.g., 22

non sex specific chromosomes for the human and 19 for the mouse. Pieces on the DNA, or

genome which are corresponding to protein synthesis are called genes. Only a small fraction

of the entire genetic material are genes, about 2% for the human. Not all parts of the genes,

however, are coding for proteins. The non-coding part of a gene is called intron and coding

part is referred to as exon.

Rarely occurring changes in the sequence of the base composition of the DNA are called

substitutions. Substitutions are essential for the evolution of species. In fact, the rate at

which DNA undergoes substitutions varies not only between mammalian species [137-140]

but even across a single genome and over time [141-143]. Various models accounting for

this variation have been suggested [141, 143-145], but the cause of this the variation remains

unknown. A second significant substructure of the genome is the local GC content, which is

the proportion of cytosine (C) and guanine (G) nucleotides in a local region of the genome.

The GC content varies over large length scale of the DNA, typically about 150 kbp (kilo base

pairs). Structures of a elevated GC content are called GC isochores. Despite their existence,

the evolutionary origin remains unclear [146]. Numerous models have been proposed to both

account for this isochore structure and to determine whether it is in a state of decay, but no

73
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consensus has been reached in either case [147, 148]. In this Chapter, the local substitution

rate and the GC content are incorporated into a single model, thereby providing a unified

description for both processes. Before being able to tackle this question, a reliable estimate

of the substitution rate across the genome is needed.

There are numerous approaches to estimate the substitution rate pattern based on inter-

species comparisons of certain sequences, e.g. [142, 143]. However, the usage of different

species results in a convolution of species or lineage specific features of the substitution rate

to the final estimate. At first glance, calculating substitution rates based on a single species

seems to be impossible since the only available source is the sequence one observes today.

Fortunately, nature has invented a curiosity which allows the calculation of the substitution

rate, resolved in space (the position on the genome) and time. This is the presence of repet-

itive elements in the genome, short sequences occurring in an immense number of copies.

Different types of these repetitive elements (in short repeats) have been copied at distinct

times into the genome. These types are called repeat families in the following. Most of

the repeats are equipped with a copying mechanism allowing them to spread over the whole

genome. Others however are making use the of the copying mechanism by attaching them-

selves to other repeat families such that those can carry them along. Thereby, they act like

freeloaders on a molecular scale. Due to this copying process the total amount of copies of a

single repeat family can reach up to five million in the human genome. Since the typical size

of the repeats itself lies between hundred and a few thousand base pairs (bp), about 40% of

the entire human genome consists of repetitive element specific bases. In addition, the high

copy number provides the possibility to reconstruct the ancestral or consensus sequence of

each family. Of course these differ from the copies in today’s genome because of substitutions

which have been occurred after they entered the DNA. In total, about 800 different repeat

families can be identified which are almost uniformly covering the last 150 Myr (million years.

The spatial resolution is high enough of in order to find still 40 kb of repeat specific base

pairs in stretches of about 150 kb (on average) for the human genome. Note that the afore-

mentioned criteria of the repetitive elements are also roughly valid in the genomes of mouse,

rat, dog, and chimpanzee. This massive occurrence of repetitive elements naturally raise the

question of the rôle they play in the genome. Concerning this question, in [149] the author

comes to the conclusion that due to the cut and paste mechanism described above, repeats

are reshaping the genome which might lead to beneficial effect for the species. The results

presented in [150] suggests that repeats are speeded up the evolution of the dog’s morphology.

These works are suggesting that at least some repetitive elements have or might have had

some function and are not just so called ”junk DNA”. Repetitive elements can be classified by

the GC content, size, and their copying mechanism. Three major groups are ALUs, LINEs,

and DNA-transposons. ALUs are GC rich, whereas LINEs and DNA-transposons are mostly

GC-low. The size of the three types is also quite distinct: 80−300 bp for the ALUs, 6−8 kbp

for LINEs, and 80 bp-3 kbp for DNA-transposons. There are also differences in the copying

mechanism between these groups, for more details see [151].

As already mentioned, the consensus sequence of the repeat families can be reconstructed.

These reconstructed sequences are available at the RepBase [152]. Aligning the consensus

sequence using the RepeatMasker software [152], provides the input for our method. A sample
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output of the alignment procedure is given below.

  chr1              1405 AGACAAATTCTCGGCCGACCTCATTGATCCTCGCCTCCTGGCGTTCACGC 1454

  chr1              1455 GCTTGTGTAATCTGCTCCCCTTAAGTGTGAGTGGAATCTGTGACTTGCTT 1504

  MLT1E                7 AGACAGACTCTAAGGTGGCCCCCATGATCCCCGCCTCCTGGTGTTCACGC 56

  MLT1E               57 CCTTGTGTAATCCCCTCCCCTTGAGTGTGGGTGGGACCTGTGACTTGCTT 106

                              i i   vi vi i  i vv      i          i

                         v           iv        i      i    i i

Here, red letters are representing the sequence of today’s genome and the blue letters are the

corresponding aligned consensus sequence. Note that the four bases of the DNA are abbrevi-

ated by: A for adenine, C for cytosine, G for guanine , and T for thymine. Substitutions are

marked by black letters, where v relates to the twelve transversions (A→ C, T → G, A→ T ,

T → A, C → G, G → C,C → A, and G → T ) and i denotes the remaining four transitions.

(A → G, T → C, G → A and C → T ). Since the four bases of the DNA belong to two

chemically different groups: purins (A, G) and pyrimidins (C, T), substitutions leading to a

base of a chemically different group are called transversions. Whereas, substitutions of bases

within either purins and pyrimidins are called transitions. Using this source of data a model

for the evolution of non-coding DNA is proposed to relate the outcome of the RepeatMasker

to the substitution rate pattern. This model is based on the following three observations:

1. In terms of practical use, the computation of absolute substitution rates is unnecessary.

Instead, it is sufficient to estimate the substitution rate relative to the genomic average.

2. Without loss of accuracy the problem can be greatly simplified if relative rates of

substitution types are assumed to be constant for a certain point in time and location

on the genome, e.g., the quotient of the rate for the substitution A → C with that of

A→ G is constant.

3. Substitution rate estimations reflecting random noise introduced by the data collection

methods which can be filtered out by the application of statistical tools.

These observations lead to a model which is considerably less complex than other models

discussed in the literature, e.g., the model proposed by Arndt et al. [153]. To obtain a deeper

insight in the processes which may cause the mutative events across the DNA, a simple

description is more powerful than an unnecessary complex description.

The remaining Chapter is organized as follows: A model for the evolution of non-coding

DNA based on the observations above is formulated in Sec. 6.2 and the issue of applying

the model to the RepeatMasker data is given in Sec. 6.3. In Sec. 6.4 the used noise-filtering

procedure is discussed. Furthermore, a model extension taking nearest neighbor interactions

into account, thus leading to a significantly more complex model is addressed in Sec. 6.5. It

is shown that by ignoring this neighbor effect no significant lost in accuracy may be seen.

First, results using inter-species comparisons are presented in Sec. 6.6, whereas a validation

of the model assumptions and the results are given in Sec. 6.7. Biological issues, namely the

conservation of the substitution rate pattern during the time course and its relation to the

GC isochore structure is addressed in Sec. 6.8. This leads to the discussion of a possible cause

for the substitution rate pattern, given in Sec. 6.9.
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γ Partition index α Index denoting a repeat

family

Z Number of partitions M Number of repeat families

t Time (t = 0 denotes present) tα Age of repeat family α

C1, . . . , C7 Label of an age-class ti Mean age of age class Ci

mγ(t) Substitution rate over parti-

tion γ at time t

m(t) 1

Z

∑

γ mγ(t)

τγ(t) mγ(t) −m(t) fα Average value of f(t) over in-

terval (−tα, 0)

[pγ(t)]i Probability a Markov chain in

γ is in state i at time t

Rγ(t) Rate matrix for Markov chain

γ at time t

Qαγ Transition rate matrix for

Markov chain γ over time

interval (−tα, 0), connect-

ing the initial probability

pγ(−tα) to pγ(0)

q Relative rate matrix for all

Markov chains

tαmα tα in scaled units ταγ/mα τγ averaged over (−tα, 0) in

scaled units

σ2

α Z−1
∑

γ(ταγ)2 variance of

ταγ

σα

√

σ2
α – standard deviation.

[kαγ ]ij Number of family α’s base po-

sitions in γ containing base-

type i at the time of α’s in-

sertion and base-type j at

present.

[Nαγ ]i Number of family α’s base po-

sitions in γ containing base-

type i at the time of α’s in-

sertion.

Table 6.1: Summary of the used Notation. Definitions are chosen to be mostly consistent with [154].

6.2. A Model for the Evolution of Non-Coding DNA

Ideally one would like to compute the substitution rate for each base at any given instant of

time, but such a goal is unlikely to ever be achieved. What can be done is to estimate aspects

of the substitution rate by grouping bases in terms of time and location on the DNA. The

first aspect will be achieved by calculating average rates over a given time period terminating

at the present time. While the second issue will be achieved by dividing the genome into

partitions, or windows, that will reflect the variation. To calculate the spatial variation of the

substitution rate the genome is divided into Z partitions, where a given partition is denoted

by the index γ. Note that a summary of the used notation is given in Tab. 6.1. Moreover, the

model assumes that the substitution rate over any window γ is constant, but that these rates

can vary between windows. The three functions further below will be of primary interest for

the following investigation:

• mγ(t): The substitution rate of partition γ at time t.

• m(t) = 1
Z

∑

γ mγ(t): The genome-wide averaged substitution rate at time t.
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• τγ(t) = mγ(t) − m(t): The variation of the substitution rate of partition γ from the

genome mean.

Note that the last quantity is the value which will be estimated. However, this is only possible

up to a constant factor. While the substitution rate and its variation is discussed as a function

of time, it is impossible to actually determine those value for a specific point in time. Instead,

the average over certain time periods is considered. In general, the time-averaged value of a

function f(t) over the period (t1, t2) is denoted by:

f =
1

t2 − t1

∫ t2

t1

f(t) dt

In the following we reference a timeline in which the modern genomes occur at time 0, with

negative time values denoting the past. As mentioned in Sec. 6.1 the calculations are built on

an analysis of repeat families: sets of interspersed repeats that share a common progenitor.

As source of information on modern instances of each family, as well as the reconstruction

of each family’s common ancestor sequence the RepeatMasker [152] is used. Throughout

this Chapter, the index α represents a given repeat family and tα denotes the age of repeat

family α. Thus, tα is the positive number such that repeat family α was inserted at time

−tα. In the following analysis we will often need to consider the time-averaged value of some

function f(t) over the time that repeat family α has existed in the genome, i.e., over the time

period (−tα, 0). This will be denoted by fα. Subject of our investigation is τγ , the value

τγ(t) averaged over time. The interest in τγ derives from observation 1 in Sec. 6.1 on p. 75,

namely that the determination of the absolute substitution rate is not necessary. From this

observation it also follows that we need only to estimate this value up to a constant factor.

Estimating cτγ for some constant c is considerably easier then the estimation of mγ itself.

This results in a reduction of the complexity of the presented model.

Let us assume that the substitution rate of a base is memoryless and independent of the

base’s neighbors, allowing us to model the problem with continuous, non-stationary Markov

chains. Conceptually, each base position is represented by a single chain, whereas the pa-

rameters are fixed for chains within a partition but varying between partitions. These chains

consist of four states representing the possible contents of the base position. Here, the states

are numbered states from 1 to 4 and define the correspondence as: A=̂1 (adenine), C=̂2 (cy-

tosine), G=̂3 (guanine), and T =̂4 (thymine). Since our analysis is based on data extracted

from interspersed repeats, a model for the propagation of the repeat’s base substitutions is

needed. The initial model assumes a star phylogeny in which each family was active for a

brief time – resulting in the creation of numerous copies that are essentially identical at the

time the family becomes inactive. It has been reported that 90% of all repeat families are

conform to the phylogenic star model [141]. In Sec. 6.7 we will show that while the formu-

lation makes this assumption, the presented model can tolerate considerable deviations from

the assumed repeat model.

In the following a master equation is derived, Eq. (6.6), that allows to relate τγ to data

produced by the RepeatMasker [152]. The nucleotide content of a specific partition γ is

modeled by a series of identical continuous Markov chains. Consider the probability that this
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chain occupies a given state at time t is denoted by the four component row-vector pγ(t).

Thus, [pγ(t)]i is the probability that in partition γ and at time t the chain occupies state

i. Equivalently, [pγ(t)]i can be regarded as the probability that a randomly selected base

from partition γ at time t is in state i. Since pγ(t) represents a probability distribution,

is must satisfy
∑

i [pγ(t)]i = 1 for any t. A Markov chain for partition γ is defined by a

state-transition rate matrix that depends on time t and is represented by Rγ(t). For i 6= j,

the value [Rγ(t)]ij is the rate at which state i will undergo a state transition to state j. By

the theory of time continuous Markov processes this leads to

d

dt
pγ(t) = pγ(t) Rγ(t) . (6.1)

In order to ensure that pγ(t) remains a probability distribution,
∑

j
d
dt [pγ(t)]j = 0 must be

satisfied and therefore
∑

j [Rγ(t)]ij must vanish. This is ensured by setting the diagonal

elements [Rγ(t)]ii to a negative value such that each row of Rγ(t) sums to zero. These

elements represent the rate at which the chain will leave state i. It then follows that for any

given t0 and t > t0:

pγ(t) = pγ(t0) exp

(∫ t

t0

Rγ(t′) dt′
)

. (6.2)

The expression exp
(∫ t

t0
Rγ(t′)dt′

)

in Eq. (6.2) is a 4 × 4 matrix that connects the state of a

chain at t0 to a state at t and will be denoted by Q. In particular, we are interested in the

matrix connecting the states at a time −tα when repeat-family α was copied into the genome

and today (t = 0). This quantity is defined by

Qαγ = exp

(∫ 0

−tα

Rγ(t′) dt′
)

. (6.3)

By observation 2 in Sec. 6.1 on p. 75, the relative rates of substitutions for the individual

bases are constant in time and space. In other words, while Rγ(t) as whole is time-dependent,

any ratio of its components [Rγ(t)]ij / [Rγ(t)]i′j′ is constant in time and not dependent on

location. This approximation allows us to assume the existence of a time-independent relative

rate matrix q such that

Rγ(t) = mγ(t) q , (6.4)

where the local mutation rate mγ(t) is a scalar function which describes the over-all depen-

dence of Rγ(t) on time and space. The ratio of two elements of q thus represents the relative

probabilities of the corresponding substitution rates. This implies that q is fixed only up to

a common multiplicative factor. More precisely, while the value of the product mγ(t) q is

fixed, q might be multiplied by factor c whereas the impact of c is compensated by setting

mγ(t)/c. As with matrix Rγ(t) it must be ensured that qii = −∑j 6=i qij . Thus, all diagonal

elements of q are dependent quantities. It follows from strand-symmetry that of the twelve

off-diagonal elements only six are independent. Here, strand-symmetry is the assumption

that the substitution rate of each transition on one strand is the same on the complementary
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strand of the DNA, e.g., the rate of A → C is assumed to be the same than T → G, since

T is the complementary base of A, and G that of C. These remaining substitution rates are

referred to as q1, . . . , q6. Since q can only estimated up to a constant factor, the previously

discussed freedom is fixed by setting q1 = 0.05. This rate reflects the transition A → C and

T → G. Now, we observe from Eq. (6.4) that

∫ 0

−tα

Rγ(t′) dt′ = q

∫ 0

−tα

mγ(t′) dt′ = q

∫ 0

−tα

(
m(t′) + τγ(t′)

)
dt′

= qtα (mα + ταγ) = qtα mα

(
1 + ταγ/mα

)
, (6.5)

where mγ(t) = m(t) + τγ(t) and recalling that ταγ is τγ(t) the averaged substitution rate

variation over the period (−tα, 0). Combining Eq. (6.3) and Eq. (6.5) we finally arrive at the

central equation which manifests the used evolutionary model for the investigated non-coding

DNA. This equation reads

Qαγ = exp

(

qtα mα

(
1 + ταγ/mα

)
)

. (6.6)

The left hand side of this equation refers to a set of matrices derived from the RepeatMasker

data, one matrix for every repeat type α in each partition γ. Of course, no matrix can be

established if a particular repeat family does not occur in a certain partition. If M is the

number of repeat families and Z the number of partitions, maximal Z ·M matrices Qαγ are

available. This set of matrices is the input used to estimate on the right hand side of Eq. (6.6):

(i) the independent components of q, (ii) the M values of tαmα, and (iii) the actual local

mutation rate patterns ταγ/mα. Finally, from Eq. (6.5) can be seen that only time-averaged

mutation-rates ταγ can be estimated.

6.3. Applying the Model to Sequence Data

Application of Eq. (6.6) to sequence data requires three steps: extracting repeat families

through RepeatMasker, computing a maximum-likelihood fit of Qαγ to the repeat data,

estimating q, tα for each repeat family, and ταγ . The data obtained from the RepeatMasker

provides the reconstructed ancestor of each repeat family, as well as a pair-wise alignment

between each modern instance and the family’s reconstructed ancestor. Alignment positions

involving gaps are discarded. For each repeat family α and partition γ the following quantities

are defined:

• kαγ : A 4×4-matrix such that [kαγ ]ij is the total number of bases which started in state

i at time −tα and ended in state j at time 0, for each partition γ.

• The four dimensional vector Nαγ : [Nαγ ]i =
∑

j [kαγ ]ij is the number of chains that were

in state i at time −tα.

Using the RepeatMasker output the matrices kαγ are obtained by counting the number of

transitions from the consensus sequence to the aligned sequence. Moreover, each matrix kαγ
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is a realization of a multinomial distribution, which is due to the counting process. In order

to gain an estimate of Qαγ a maximum-likelihood fit is applied in the following. Since kαγ

obeys a multinomial distribution and since the counts are independent with respect to the

partition γ and the repeat family α, the likelihood reads

L =
∏

αγ

∏

i

[Nαγ ]i!
∏

j

(

[Qαγ ]ij

)[kαγ ]ij

[kαγ ]ij !
. (6.7)

Therefore an estimate of [Qαγ ]ij is given by searching for those values for [Qαγ ]ij that max-

imize L. Since the logarithm is a monotonous function, it is more convenient to maximize

lnL rather than L. Furthermore, the additional constraint that
∑

j [Qαγ ]ij = 1 has to be

taken into account which can be achieved using a Lagrange multiplier λ. This leads to the

following necessary condition for the maximum

∂

∂[Qαγ ]ij

[

lnL + λ
(∑

k

[Qαγ ]ik − 1
)]

= 0 . (6.8)

After the removing terms which are independent of [Qαγ ]ij , Eq. (6.8) can equivalently be

formulated by

∂

∂[Qαγ ]ij

(

[kαγ ]ij ln[Qαγ ]ij + λ [Qαγ ]ij

)

= 0 .

This equation has the unique solution

[Qαγ ]ij =
[kαγ ]ij
[Nαγ ]i

, (6.9)

where λ is determined by demanding that the constraint
∑

j [Qαγ ]ij = 1 is satisfied. Moreover,

the second derivative of lnL with respect to [Qαγ ]ij yields −[kαγ ]ij/([Qαγ ]ij)
2 which leads

after the insertion of Eq. (6.9) to −([Nαγ ]i)
2/[kαγ ]ij . Since this expression is negative, the

sufficient condition for a maximum of L is satisfied. Therefore, the matrices Qαγ can be

estimated using Eq. (6.9) which is accessible by the data obtained from the RepeatMasker.

The next step is to extract q and tαmα from Qαγ . This is done by considering the limiting

case where Z = 1, thereby reducing the entire genome to single partition γ′. As there can be

no variation across a single sample, it follows that ταγ′ = 0. Thus, Eq. (6.6) reduces to

Qαγ′ = exp
(
q tαmα

)
. (6.10)

Because there is only one partition, the index γ′ is omitted in the following if the case Z = 1

is considered. For each of the M repeat families, now M 4 × 4-matrices Qα are determined

from Eq. (6.9) and thus 16 · M data points are obtained. These data points are used to

simultaneously calculate the five undetermined components of the matrix q, as well as the set

of M scaled times tαmα. This is done by a multidimensional fit of these M + 5 parameters

to the 16 ·M data points of the matrices Qα using the model described by Eq. (6.10).

The last step is to break the genome into Z partitions and estimate the local substitution

rate pattern ταγ with the help of Eq. (6.6). Let us rewrite Eq. (6.6) as Qαγ = exp
(
qxαγ

)
,
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Figure 6.1: Shown is the standard deviation of the substitution rate pattern σα/mα against the age of the

repeat family tα mα. Age classes C1, C2, ...., C7 are defined by dividing the time interval into seven equally

sized time segments, starting from tα mα = 0.245 and ending at tα mα = 0.77.

and calculate the best fits for xαγ keeping q and tαmα fixed to the values determined by the

previous step. The estimate of ταγ/mα is then extracted from

ταγ/mα =
xαγ

tαmα
− 1 . (6.11)

Note that if there was no copy of repeat-family α in, e.g., partition γ, ταγ/mα cannot be

computed for this partition. Thus, the actual amount of data for ταγ/mα is slightly less than

M · Z data points. To improve the statistics, ταγ/mα is averaged over several sets of repeat

families α. Because ταγ/mα is time-averaged over the interval (−tα, 0), this average should

be limited to repeats of roughly the same age. Therefore, each repeat family α is assigned to

one of the seven time classes C1, . . . , C7 based on the estimated family age tαmα. Moreover,

the time classes where chosen such that roughly the same amount of repeat families are in

each class. Extremely old and young repeats are therefore excluded. Figure 6.1 shows tαmα

against the standard deviation σα/mα of ταγ , as defined in Tab. 6.1. Here, the seven age

classes are coded by a distinct color. In total, the repeat families produce a signal around

σα/mα = 0.25. The relative substitution rate pattern for each time class is estimated by

averaging over all Mi members of the time-class

τ i
γ/m =

1

Mi

∑

α

ταγ/mα . (6.12)

To simplify the notation, the age-class index i is dropped in m for the expression above. In

addition, the time ti represents the average age of time-class Ci in our scaled units. The seven
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Figure 6.2: Dependence of the variance of the substitution rate pattern σ2/m2 with respect to the number

of used partitions Z. This relationship is exemplary shown for the time class C6. The effect of uncorrelated

observational noise superimposed on the data becomes visible by the straight line of the upper curve for

Z > 3000. If the effect of the noise is corrected, a pronounced plateau arises (lower curve), showing that an

increase of resolution beyond Z > 3000 does not substantially affect the underlying true variance σ2
true/m2 of

the pattern.

sets of values τ i
γ/m are local rates averaged over time-periods of different length. This set

yields information about the time dependence of the substitution rate pattern. In some cases

an average over all seven age classes is needed. The resulting substitution rate pattern is

then denoted by τγ/m. In other cases we are interested in investigating the relation between

the pattern and the repeats from which it is calculated. In these cases, two or more mutually

exclusive subsets out of the M different repeat-families are defined and averaged over each

subset as done in Eq. (6.12). Note that at the highest spatial resolution possible for the

human genome, Z = 22000 or a partition size of approximately 150 kb (kilo base pairs),

each partition is occupied by representatives from at least 10 different repeat families of each

time-class and mostly more than 50. Since the estimated substitution rate pattern is strongly

corrupted by observational noise, the underlying signal is reconstructed using a noise filtering

approach. This procedure and its theoretical justification is subject of the following section.

6.4. Reconstruction of the Underlying Substitution Rate

Pattern

Methods used to generate the raw data, e.g., the RepeatMasker, the RepBase reconstructions

of the repeat’s consensus sequence, and the genome sequencing, are not completely accurate.

Errors introduced in generating these data will be reflected as random noise in τ i
γ/m. As

this noise is independent of the actual signal it is possible to filter it out. Figure 6.2 both

demonstrates the existence of this noise and demonstrates how to construct the filter. The

top curve shows the variance σ2/m2 = Z−1
∑

γ(τ i=6
γ /m)2 for age-class C6 as a function of
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the number of used partitions Z. For the remaining section we suppress the scale parameter

m for sake of clarity. In order to understand the shape of the curves in Fig. 6.2, let us

assume that the genome has been divided into Z0 partitions and that the signals in two

neighboring partitions are uncorrelated. Let Z = kZ0, where k is a positive integer, it then

follows from the independence of the signals that σ2(Z) = k σ2(Z0). Since k = Z/Z0 we

arrive at σ2(Z)/Z = σ2(Z0)/Z0. Thus, for a noisy signal, σ2(Z) is a constant multiple of

Z. However, in the upper curve of Fig. 6.2 the true underlying substitution rate pattern is

contaminated with noise. If Z is large enough the underlying pattern becomes independent

of Z, since further increasing the resolution no longer affects the average signal per partition.

Here, the assumption is used that a characteristic length scale ∆L exists for the substitution

rate pattern, such that the variation of the pattern is approximately constant on smaller

length scales than ∆L. Thus, the variance of the noise free signal σ2
true is constant. Hence,

for a sufficiently large Z we expect to find

σ2(Z) = σ2
true + cZ ,

where c is constant. This is consistent with Fig. 6.2, where the upper curve straightens out

at Z ≈ 3000. This is also observed for each other time class. For Z > 3000 the unknown

constant c can be estimated by a linear fit to the remaining data points, allowing us to

calculate σ2(Z)true. This estimate of the variance for the underlying substitution rate pattern

σ2(Z)true is of great importance in order to optimize the noise-filtering process described

further below. The shape of σ2(Z) for Z < 3000 can be explained as follows. Imagine that

∆W is the length of the interval over which the substitution rate pattern is evaluated. If

∆W > ∆L then the calculated value represents an average over partitions where the pattern

is not constant, thus introducing inaccuracies that result in a diminished estimate of the

variance. Thus only if ∆W < ∆L a faithful representation of τ i=6
γ is obtained and therefore a

correct estimate of the variance. A further reduction of ∆W will have no effect on the results.

From these results we can conclude that the characteristic length scale of the substitution

rate pattern is approximately 1 Mb , corresponding to Z = 3000. Partition sizes larger than

1 Mb are yielding a coarse grained signal, whereas partition sizes less than 1 Mb produce

identical results. This effect is demonstrated in Fig. 6.3. Here, the noise filtered substitution

rate variation pattern τ i=6
γ /m is shown for different partition sizes. As expected, hardly any

effects are visible on the results using Z = 22000 partitions (black line) or Z = 5000 partitions

(red line). But if Z = 300 partitions are used (blue line) the curve collapses toward the

genome average, smearing out the fine structure of the pattern. Moreover, the same analysis

technique shows that the necessary resolution size of 1 Mb holds for the mouse genome as

well. Now, a completely adaptive noise filtering procedure is described to reconstruct the

underlying signal.

Let us first designate the unfiltered mutation rate pattern as yγ , which can be decomposed

into two parts: the true signal τγ , and the noise contribution ǫ with variance σ2. The noise ǫ

is assumed to be independent with respect to the partition index γ. To simplify the notation

the overline symbols are also omitted for the remainder of this section. Hence,

yγ = τγ + ǫ . (6.13)
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Figure 6.3: A graph showing the substitution rate τ i=6
γ /m for age-class C6 against its position. All 22

chromosomes of the human genome are linked together: the first partition γ = 1 is located on chromosome 1,

while γ = Z refers to the last partition located at the end of chromosome 22. If τ i=6
γ /m = 0 the corresponding

partition γ has a substitution rate equal to the genome average; as τ i=6
γ increases (decreases), we find partitions

with higher (lower) substitution rates. Each curve represents a different resolution: the genome was broken

into Z = 22000 partitions for the black line, into Z = 5000 partitions for the red line, and into Z = 300

partitions for the blue line.

To estimate τγ on the basis of yγ the data must be smoothed in order to remove the variation

induced by the noise. This is possible if the true signal τγ is a smooth curve. The smoothing

technique used to achieve the noise reduction has the following property: let y = (y1, . . . , yZ)t

be the data vector defined by Eq. (6.13), where the superscript t denotes the transposition.

The estimate for the signal τ̂ = (τ̂1, . . . , τ̂Z)t at each location γ is then given by

τ̂ = Sy, (6.14)

where S is a Z × Z matrix. Kernel smoothers, such as the running mean, are frequently

used for this purpose, see e.g. [155]. Here, we decided to use smoothing splines, which are

asymptotically equivalent to kernel smoothers [156]. The advantage of smoothing splines

is that the reconstruction of sharply peaked signals is more accurate than using a kernel

method. Some examples and comparisons to alternative smoothing procedures can be found

in [157, 158].

Now, let us for a moment consider that the partition index γ is a continuous variable,

permitting an interpolation between the partitions. By assuming that the unknown signal τγ
in Eq. (6.13) is at least twice continuously differentiable, an additional term is added to the
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usual least-squares function to penalizes the roughness of the estimate. Hence, the complete

functional yields

L(g) =
Z∑

γ=1

(yγ − gγ)2

σ2

︸ ︷︷ ︸

least−squares

+ ξ

∫ [
d2gγ

dγ2

]2

dγ

︸ ︷︷ ︸

penalty

(6.15)

which has to be minimized with respect to g in order to obtain an estimate of τγ in equa-

tion (6.13). The smoothing parameter ξ ≥ 0 determines the amount of smoothing, ranging

from zero leading in interpolation to infinity enforcing linear regression. The observational er-

ror σ is often unknown, but it can be absorbed in the smoothing parameter by using ξ̃ = ξσ2.

Therefore, σ = 1 can always be assumed without loss of generality. The minimization of

equation (6.15) within the class of twice continuously differentiable functions and vanishing

second derivative at the boundary leads to natural cubic smoothing splines. Reinsch [159]

showed that τ̂γ = arg ming{L(g)} are piecewise cubic polynomials which fit together such

that the second derivative is continuous at the joints. An algorithm to calculate the parame-

ters of these polynomials is given in [159, 160]. The crucial point of every smoothing method

is the selection of the optimal smoothing parameter ξ balancing the variance and the squared

bias of the reconstructed signal.

To find this optimal value for the smoothing parameter, suppose that τ̂ξ,γ is an estimate

of the signal τγ that depends on the smoothing parameter ξ. Then the mean-squared error

(MSE)

MSE(ξ) = Z−1
Z∑

γ=1

(τ̂ξ,γ − τγ)2 (6.16)

is an appropriate measure the quality of the reconstructed signal with respect to smoothing

parameter ξ. Minimizing MSE(ξ) gives the optimal smoothing parameter, but the definition

of the MSE still contains the unknown signal τγ . To deal with this unknown, we estimate

MSE first. Thus, a minimization of the estimated MSE score with respect to ξ yields an

estimate of the optimal smoothing parameter. This can be done by cross validation: let

τ̂
(−i)
ξ,γ=i be the estimated signal for partition i, whereas the i-th observation yi is left out in the

smoothing procedure. An estimate of MSE is then given by the cross validation score

CV(ξ) = Z−1
Z∑

i=1

(

yi − τ̂
(−i)
ξ,γ=i

)2
.

As shown in [160], the cross validation score is equivalent to

CV(ξ) = Z−1
Z∑

i=1

(
yi − τ̂ξ,γ=i

1 − Sii(ξ)

)2

.

Hence, τ̂
(−i)
ξ,γ=i need not be calculated explicitly – an insight which considerably reduces the

computational costs. But there is a weak point in this construction: consider a point yi with



86 Quantifying the Substitution Rate Variation Across Mammalian Genomes Chapter 6

a strong influence on τ̂γ . Due to the calculation of CV, leaving out yi will significant effect the

score. In order to correct this, these points should be weighted differently. An appropriate

weighting leads to generalized cross validation introduced by Craven and Wahba [161]:

GCV(ξ) =
Z−1

∑Z
i=1

(

yi − τ̂
(−i)
ξ,γ=i

)2

(1 − Z−1trS(ξ))2
, (6.17)

where trS(ξ) denotes the trace of S. The minimum of the GCV-score [162, 160] can be

found with aid of standard nonlinear minimization routines, see e.g. [14]. Since the quality of

every estimate depends on the quality of the data, the estimation of the optimal smoothing

parameter is rather unstable if the data are too noisy. This might be a particular problem for

the younger age classes. Therefore, an upper bound ξmax is provided, which is chosen such

that the variance of the reconstructed signal is consistent with the estimated variance of the

underlying substitution rate pattern σ2(Z)true.

6.5. The Effect of an Elevated CpG Dinucleotide Substitution

Rate

So far, a model for the evolution of non-coding DNA has been proposed containing six pa-

rameters. This model is referred to as the six-parameter model. In App. A we formulate

an alternate seven-parameter model, where the seventh parameter, qCpG, accounts for the

possibility of a CpG methylation – a common effect that leads to higher rates of CpG to TpG

or CpA substitutions. The subscript p here indicates that the corresponding dinucleotides

have been methylated. Methylation offers the possibility for passing information to the off-

spring without altering the sequence of the genome and provides an important mechanism

to bequeath information to the next generation. Especially the methylation of the CG dinu-

cleotides in the promoter region of a gene controls the protein synthesis of the corresponding

coding region. Moreover, Arndt et al. argues that substitutions occurring in these sites are

as much as 40 times higher than the rate of single-nucleotide substitutions [141]. Hence,

ignoring this factor could reduce the accuracy of the estimations. It is shown in the following

that the accuracy is not diminished, even with a CpG substitution rate as high as predicted

in [141]. The six-parameter model’s failure to account for the CpG substitution rates makes

little difference to the final results. More precisely, it absorbs the actual value of qCpG into

the estimation of q6 and thus reducing the hypermutability of the CpG dinucleotides to an

effective rate q6.

If the substitution rate of a base is dependent on its neighbors, then the state of a chain

is no longer adequately described by p(t). A more complex joint distribution p(i, j, k; t) is

needed, which denotes the probability that, at time t, a given chain is in state j and that

its left and right neighbors are in state i and k respectively. For the 64 dimensional vector

with components p(i, j, k; t) a master equation, Eq. (A.5), is derived in App. A. Since this

model contains seven parameters it is referred to as seven-parameter model to distinguish

between the model presented in Sec. 6.2. This model is equivalent to the model formulated
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Analysis

Rate Transition actual CpG: 0% CpG: 12.5%

q1 A→ C and T → G 0.05 0.05 0.05

q2 A→ T and T → A 0.05 0.052 0.048

q3 C → G and G→ C 0.05 0.050 0.046

q4 C → A and G→ T 0.05 0.052 0.050

q5 A→ G and T → C 0.15 0.15 0.14

q6 G→ A and C → T 0.15 0.19 0.27

qCpG CpG→ CpA and 2

CpG→ TpG

Table 6.2: Results on the consistency of model and simulation: The third column specifies the substitution

rates actually taken in the seven-parameter model, while columns 4 to 5 present the results predicted by the

six-parameter model in the presence of elevated CpG substitution rates, showing the effect on a genome with

an initial 0% CpG content, and the effect on a genome with an initial 12.5% CpG rate respectively.

and studied by Arndt et al. [153]. Note that the seven-parameter model reduces to the

six-parameter model if the rate qCpG is set to zero. If on the other hand qCpG 6= 0 then the

seven-parameter model shows a richer dynamics, such that the reduced description in Eq. (6.2)

can only be considered as an approximation. The quality of this approximation is studied in

App. A by comparing the estimated age tα in the six-parameter model with the actual values

used in the simulation of the seven-parameter model. This offers the opportunity to study

the expected error in the estimation of the transition matrix q and tαmα. Table 6.2 shows

resulting estimates for q under two conditions: first, when initial CpG content is 0%, and

second, when it is 12.5%. In both cases we assume that transition substitutions (q5, q6) occur

at three times the rate of transversion substitutions (q1, · · · , q4), and use the prediction of

Arndt et al. that CpG dinucleotides experience a forty-fold increase in substitution rates [141].

The estimated versus actual values of q are presented in Tab. 6.2, keeping in mind that q is

computed only up to a constant factor and hence results can be arbitrarily scaled. Under

both conditions the estimations of q1 through q5 are accurate, whereas q6 is overestimated

in proportion to the initial CpG content. The overestimation of q6 is due to the fact that it

is the only rate which is directly relevant to CpG related substitution. This is because rate

q6 governs exactly the two transitions affected by the CpG→ CpA and CpG→ TpG, namely

G → A and C → T . So by adapting rate q6 to the data, at least some of the effects of the

enhanced CpG-specific rates can be taken into account.

Concerning the estimation of tα mα, we find again that tα mα is subject to overestimation

proportional to the initial CpG content on the genome. With an initially small CpG content

very accurate estimates of tα mα are obtained, while a CpG content of 12.5% leads to as much

as a 20% overestimation in tα mα, see App. A for more details. Mammalian genomes have

fairly low CpG content (≈ 1%), and hence the estimates using the six-parameter model are

expected to be quite accurate. More importantly, the results justify the technique of removing

CpG cites before performing the computations – a method frequently used but whose validity

have been disputed in [141]. Having thus justified this technique, after blocking-out all CpG



88 Quantifying the Substitution Rate Variation Across Mammalian Genomes Chapter 6

0 0.5 1

mαt
1,α (all C

p
G sites removed) 

0

0.5

1

m
αt 2,

α (
in

cl
ud

in
g 

al
l C

pG
 s

ite
s)

others
DNA-transposons
LINEs
ALUs

-0.2 -0.1 0 0.1 0.2 0.3

τγ / m (all C
p
G sites removed)

-0.2

-0.1

0

0.1

0.2

0.3

τ γ / 
m

 (
in

cl
ud

in
g 

al
l C

pG
 s

ite
s)

0 0.02 0.04 0.06 0.08 0.1

CpG-content on consensus sequence

0
0.05
0.1

0.15
0.2

0.25

m
α | 

t 1,
α -

 t 2,
α|

(a) (b)

(c)

Figure 6.4: The effect of an enhanced CpG transition rate (b) on the local substitution rate τγ/m for the

human genome, and (a) on the estimation of age tα mα of repeat-family α. The values on the y-axis shows

the original output using the full sequence, whereas the quantities on the x-axis showing the same quantity,

but now computed with consensus sequences where all CpG sites are removed. Three major types of the

repetitive elements, ALUs (black squares), LINEs (red diamonds), and DNA-transposons (green triangles) are

distinguished in (a). An error estimate allowing to assess the impact of the elevated CpG decay is graphed

against the CpG content of the consensus is shown in (c). Again, the three types of repetitive elements are

distinguished for this graph.

sites from the consensus sequence, tαmα and τγ/m are estimated and compared with the

results where all CpG site are still present. The results are shown in Fig. 6.4a for tαmα

and in in Fig. 6.4b for τγ/m. As expected the estimated of τγ/m are highly correlated,

having a correlation coefficient of r = 0.98. The primary effect of neglecting the CpG-specific

transitions is introducing noise to the data. Our previous results showed that the values on

the x-axis of Fig. 6.4a should be pretty close to the true age of the repeats families while

values on the y-axis suffer from the CpG effect. Considering the three major repeat types,

ALUs (black squares), LINEs (green triangles), and DNA-transposons (red diamonds) we

observe that the age of the ALUs tend to be overestimated, while estimates based on LINEs

are fairly accurate. In Fig. 6.4c the error of ignoring the hypermutability of the CpG sites

is plotted with respect to the CpG content of the consensus sequence for each repeat-family.

The error is measured by the modulus of the difference between the age estimates having

the CpG sites removed and not. According to the numerical analysis, this graph shows a

high error for most of the repeats having a high CpG content in its consensus sequence. At

a CpG content of about 0.015, Fig. 6.4c has a minimum. However, this minimum might be

explained by the fact that the six-parameter model is calibrated to gain the best description

of the data. Thus, tαmα for repeat families with the lowest CpG content are slightly biased as
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well. Since the genome-wide estimation of time tαmα is inaccurate for some repeat families,

the partition-wide estimation xαγ is likely to suffer from the same deficiency. Because τγ/m

is the ratio of quantities having the same source of inaccuracy, the errors will tend to cancel.

Hence, the use of the six parameter model can be justified by the statements given above.

The effect of ignoring higher CpG substitution rates are mostly absorbed in the rate matrix q,

thus these values might be considered as effective rates. Further, we find that a pre-processing

step of removing CpG sites is justified and will improve results if the loss of data points can be

tolerated. Additionally, the use of the seven-parameter model as done in [153, 163, 164, 141]

is not recommended due to the following criticism: first, a massive lost in resolution has to be

taken into account since 64 dimensional probability distributions have to be considered. This

strongly affects the noise reduction process since the smallest feasible resolution to obtain

reliable results is around 1 Mb. Second, when a GC dinucleotide is formed, its methylation

is not obligatory and might also be different throughout the entire population. However,

the methylation state of the DNA and its evolution is not accessible by the sequence data

itself. A more realistic model incorporating the methylation of the DNA is therefore situated

somewhere between the six and the seven-parameter model.

6.6. Results for the Age of the Repeats tαmα and the Transition

Matrix q

The presented model is applied to sequence data of human, mouse, rat, chimpanzee and dog,

allowing inter-species comparisons of the derived quantities. Looking at the time span of the

repeat families tαmα, values between 0 and roughly 1.1 are obtained, where the scaled time 1.1

corresponds to the oldest available set of repeats. For a subset of these repeats our estimates

for the age are compared with those computed by Khan et al. [165], as shown in Figure 6.5.

This comparison yields that a linear relationship within the interval tα mα ∈ [0, 0.6] holds,

from which may be concluded that mα = 1
tα

∫ 0
−tα

m(t) dt is approximately constant in time.

Thus, mα ≈ m, where the actual value of m can be extracted from the slope of the straight

line in Fig. 6.5 and yields m = 6.5 × 10−3/Myr. However, the time independence of m is

only confirmed for the last 90 Myr and for the human genome. Later it will be shown that a

significant acceleration of the total substitution rate took place for the rodent lineage after its

speciation from the human lineage. It is therefore convenient to use our scaled units. Only if

needed a conversion to the physical time is proceeded. However, if we assume that the total

substitution rate is constant for the whole observed time period and for the human genome,

the age oldest repeat family is roughly 170 Myr.

Figure 6.6 summarizes the results of our multidimensional data fitting procedure when

applied to the human genome. It shows the 16·M data points of the matrices Qα for the entire

genome. Each matrix Qα can be related to the scaled time tα mα, allowing to display the time

dependence of the 16 components of Qα. Each graph in Fig. 6.6 corresponds to one of the 16

components of Qα and thus to a specific type of transition. Let us start the discussion with

the diagonal elements. Note that a i→ i transition can be interpreted in the following way:
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Figure 6.5: The estimate of the age for some transposable elements of the LINE type. For this specific type

the largest overlapping set of the age estimates obtained by Khan et al. [165] is compared with the derived age

using the presented method. As shown by the black line, a linear relationship holds between both estimates.

Additionally, this relation provides a conversion of our scaled units to the physical time within the observed

range.

either the probability that base i has not changed at all, or that it has changed but substituted

back to its original base. All diagonal entries must have a value of one at tαmα = 0. For

tαmα = 1, both the A → A and the T → T transition are having a probability of about

0.8, while for C → C and G → G one obtains roughly 0.6. Therefore, with a probability

of 80% an A or T in the ancestor sequence about 160 million years ago is still A or T in

today’s genome. However, for G and C bases this probability is only 60%. Analyzing the first

row of the Fig. 6.6 reveals that from remaining probability of 20% base A has experienced a

transition to C with a probability of 5%, to G with 10%, and to T with a probability of 5% at

time tαmα = 1. The remaining rows of the figure can be interpreted accordingly. Note that

transitions (green lines) have much larger substitution probabilities than transversions (red

lines). In addition, the assumed strand-symmetry is visible by complementary substitutions,

e.g., A → G like T → C, having the same probabilities. In total, Fig. 6.6 illustrates the

quality of the fitting procedure and can be regarded as a first indication that the four-state

neighbor-independent substitution model, Eq. (6.10), seems to adequately capture the main

features of the data.

Returning to the rate matrix q, the six rate constants q1, · · · , q6 are calculated for the

following species: human (hg18), mouse (mm8), chimpanzee (pt2), rat (rn3), and dog (cf2).

Note that the used abbreviation of the species, e.g., hg18 for human, relates to current builds

obtained from the UCSC genome browser [166]. An overview of the rates is given in Tab. 6.3

and reveals that there are almost no variations between the four transversion substitution

rates, q1, · · · , q4 within and between the species. However, the transition substitution rate
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Figure 6.6: Substitution probabilities for each repeat family of the human genome and all possible state

transitions. All probabilities are genome-wide averaged (Z = 1). The data points are representing the

components of the matrices Qα versus the age tαmα. Model fits using Eq. (6.10) are shown by the solid lines,

where the transversion substitutions are represented by the red line and the transition substitutions by the

green line.

is about a factor of three larger than the average transversion rate but is again almost

identical for all five species. Larger differences are observable for q6, which varies between

0.31 and 0.39. As explained in Sec. 6.5, the CpG-specific transitions are absorbed into rate

q6. In fact, this rate is substantially higher than the others which is mostly due to the

described hypermutability of the CpG sites. However, differences in q6 for mouse/rat and

chimp/human are probably due to a different overall CpG content, e.g., 0.94 % on the human

rate transition hg18 mm8 pt2 rn3 cf2

q1 A→ C and T → G 0.05 0.05 0.05 0.05 0.05

q2 A→ T and T → A 0.05 0.05 0.05 0.04 0.05

q3 C → G and G→ C 0.05 0.05 0.05 0.05 0.05

q4 C → A and G→ T 0.07 0.07 0.07 0.06 0.06

q5 A→ G and T → C 0.17 0.16 0.17 0.16 0.16

q6 G→ A and C → T 0.39 0.32 0.39 0.31 0.34

Table 6.3: Comparison of the six transition rates q1, · · · , q6, where the analysis is based on the genomes

of human (hg18), mouse (mm8), chimpanzee (pt2), rat (rn3), and dog (cf2). All abbreviations are consistent

with the used genome builds obtained from the UCSC genome browser [166].
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Figure 6.7: The estimated relative substitution rates for each of the six substitutions. A comparison of the

result obtained by Lander et al. [137], by the Arndt et al., and the proposed method is shown. Apart from

slight deviations, the predictions are leading to a similar conclusion with respect to relative transversion and

transition substitution rates. In order to obtain a meaningful comparison, all predictions are scaled to possess

an equal rate q1.

and 0.83 % on the mouse genome. In Sec. 6.8, this issue is discussed in detail since it plays an

important rôle for the equilibrium GC content of the genome. Despite the small CpG induced

differences in q6 the rates for the five species are showing a remarkable agreement; pointing to

a fundamental process of substitution, at least for mammals. Besides the presented estimates

for the substitution rates, other estimates have been discussed in the literature. These are

the rates obtained by Arndt et al. [163] or Lander et al. [137]. In Fig. 6.7 these values are

compared with our estimates, whereas the rates where scaled such that q1 possesses the same

value for each estimate. The largest deviations occur in the rates obtained by Lander et al.

with respect to the others. However, the results of Arndt et al. and ours are fairly close

together. But the picture that transitions occur about three times higher than transversions

does not change. Unfortunately, other rate estimates for other species than the human are

not available in the literature.

Returning to the age of the repeats, the estimates of tα mα for the human genome is

compared with the corresponding values calculated for another species. This is possible since

many repeat families were introduced into the genome before the speciation of both species,

i.e., the time where two lineages separated, thus having homologous copies on the genomes.

Let ts designate the speciation time of two species, and define ancestral repeats as those

repeats having an age tα > ts, they hence were inserted at a time before −ts. The age

estimates for these ancestral repeats common to the mouse and human genome are shown in

Fig. 6.8a. This process is repeated to obtain the same data for chimpanzee versus human,

dog versus human, and for rat versus human. To avoid undue scattering of the data we use

only ancestral families that have accumulated a total length of least 100 kb on both genomes.
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Figure 6.8: Inter-species comparison of the age of ancestral repeats. (a) Shown is the age of ancient repeats

common to the genomes of mouse and human (red dots), chimp/human (green dots), dog/human (blue dots)

and rat/human (turquoise dots). This is realized by plotting tαmα
species2 on the y-axis versus tαmα

hg of the

human genome on the x-axis. Arrows mark the speciation time with reference to the scaled time relating to

the human genome. Dashed lines are regressions, where a slope of one is fixed as explained on p. 95. Same

repeat families and species as in (a) are shown in (b), but now the total number of repeat copies on each

genome is correlated.

Since the repeats were inserted before the speciation of the species a straight line is expected,

which can accordingly be found in Fig. 6.8a, solid lines. The slope a and the intercept b can

be determined using a least-squares fit to the data:

a b a b

pt2 vs. hg18 : 0.999 0.002 mm8 vs. hg18 : 0.256 0.97

cf2 vs. hg18 : 0.976 0.15 rn3 vs. hg18 : 0.209 1.07 .

(6.18)

A sharp edge on a line parallel to the y-axis is visible from which we can roughly estimate

the speciation time for each pair of species. From the age of the youngest common repeat we

find four speciation times mts

hgts indicated by arrows in the Fig. 6.8a. Because the speciation

times using the scaled units are below 0.6, they can safely be related to the physical time

using m = 6.5 × 10−3/Myr, as discussed on p. 90. We obtain

pt2 vs. hg18 : 0.04 → 6 Myr mm8 vs. hg18 : 0.5 → 77 Myr

cf2 vs. hg18 : 0.52 → 80 Myr rn3 vs. hg18 : 0.5 → 77 Myr .
(6.19)

Note that the speciation time of rat and mouse with respect to the human lineage must be

equal because the separation of these species occurred significantly after the speciation with

the human lineage.

Let us now consider the linear relationship we observe in Fig. 6.8a. Next, it is mathe-

matically shown that the slope of these straight lines must be equal to one. This is fairly the

case for the chimpanzee and the dog. However, this is not the case for the rat and the mouse.

Further below, possible explanations are given after the slope-one condition has been derived.



94 Quantifying the Substitution Rate Variation Across Mammalian Genomes Chapter 6

In order to simplify the notation the following analysis is performed for the mouse and human

genomes, but we also could have used any other pair of species. Recalling Eq. (6.3) from

Sec. 6.2, let us rewrite this equation by the slightly more general expression:

Q(t1, t2) = exp

(

q

∫ −t2

−t1

m(t′) dt′
)

, (6.20)

where Eq. (6.4) is already inserted. The only difference between the latter expression and

Eq. (6.3) is that the endpoint of the used time period is arbitrary rather than zero (present).

In general, for mouse and the human genome Qm(t1, t2) is not equal to Qhg(t1, t2), where the

subscript indicates the species for which the quantity is calculated. It is known, e.g., that

the total substitution rate is substantially larger on the mouse genome than the human [167].

However, the reason for that is currently unclear. But if the time points t1 and t2 are chosen

to lie before the speciation time ts then both expressions reflect rates on the common ancestor

and hence must be equal. The only assumption here is the existence of a common ancestor,

thus the basis of the entire theory of evolution. Let −t < −ts we therefore have

Qm(t, ts) = Qhg(t, ts) . (6.21)

Again, the matrix q is identical for the common ancestor and since the exponential is a

one-to-one map, we can infer using Eq. (6.20) and Eq. (6.21) that

∫ −ts

−t
mm(t′) dt′ =

∫ −ts

−t
mhg(t

′) dt′ , (6.22)

where mm(t′), mhg(t
′) is the total substitution rate of the mouse, human genome at time t′.

Rewriting the integrals in Eq. (6.22) yields

mt
mt−mts

mts = mt
hgt−mts

hgts (6.23)

where the super-index at the overline symbol indicates that the average over the period (−t, 0)

and (−ts, 0) is taken. Hence, as long as −t < −ts we obtain

mt
mt = b+mt

hgt (6.24)

with the constant given by

b = mts

mts −mts

hgts . (6.25)

In fact, the presented method provides us with the scaled age mtαtα of repeat family α.

Correlating these ages for two species, as done in Fig. 6.8a yields a linear curve with slope

one. Note that the condition −tα < −ts is automatically satisfied because repetitive elements

before the speciation of the species differ and can therefore not be correlated. Moreover, it

should be stressed that the slope-one condition is the consequence of the fact that a common

ancestor can have only one substitution rate.

As already mentioned, the slope-one condition is realized for both chimpanzee and dog

but is violated for the rat and mouse genome. Here, the slope is a factor 4 to 5 smaller
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than expected. Interestingly, if the age of ancient repeats common to mouse and rat are

correlated, then one again obtains a regression line with slope-one (data not shown). The

näıve conclusion would, e.g., be that a common ancestor of human and rodents did not exist at

least for the age interval (0.5, 1.1), yielding that the mouse/human and rat/human speciation

time given in (6.19) are artefacts. However, this again is difficult to reconcile with the fact

that both genomes have a large number of repeats in common and that the estimate of the

speciation time is compatible with other estimates based on different methods, e.g., [138]

and [139] estimated 75 Myr as speciation time. A possible, more realistic explanation is that

the age of ancient repeat families on the mouse and rat genome is grossly underestimated.

It is evident from Figure 6.8a that the age of mouse and rat repeats are close to the border

of what can be identified using the RepeatMasker. Repeat families of a age greater than 1.3

have generally undergone too many substitutions to be correctly identified by RepeatMasker.

Let us consider a repeat family with copies having a broad time-distribution with a peak at

a time much larger than 1.3. A large fraction of copies of this family cannot be found, and

those copies that are actually found will certainly belong to just one tail of this distribution.

Thus, the RepeatMasker provides us with a truncated set of repeats comprising copies that

are much younger than the true family average. Consequently, this truncation leads to a

severe underestimation of the age for these repeat families. A possible way to approach this

hypothesis is by counting the number of copies of a repeat-family on both genomes which

should be close to each other if indeed the repeat-family was copied into the genome of the

common ancestor. This is shown in Fig. 6.8b, where we observe that the number of copies of

the common repeats on the mouse and rate genome is in fact an order of magnitude smaller

than on the human genome. One should keep in mind that the genomes of mouse and rat are

about half as long as the human genome. Still, Fig. 6.8b seems to suggest that our explanation

might be true and that the estimated scaled times suffer from an artifacts produced by the

RepeatMasker software which is not capable of delivering really the complete set of each

repeat family on the mouse and rat genome.

If we enforce the slope-one condition in Fig. 6.8a for mouse and rat, the ratio of the

average total substitution rate to the reference species can roughly estimated for mouse and

rat. However, the same estimate for dog and chimpanzee is quite accurate. The dashed

lines in Fig. 6.8a are showing again the linear relationship for the mouse and rat data in the

region mα
hgtα < 0.7 where now the slope of the line is forced to one. The intercept values b

in Eq. (6.18) then change to

b b

pt2 vs. hg18 : 0.002 mm8 vs. hg18 : 0.52

cf2 vs. hg18 : 0.15 rn3 vs. hg18 : 0.58 .

(6.26)

By Eq. (6.24) these values are equal to the constant b in Eq. (6.24) and (6.25). Rearranging

the latter expression yields

mts

species2

mts

hg

=
b

mts

hgts
+ 1 . (6.27)

Using the speciation times listed in (6.19) and the intercepts shown in (6.26), estimates of
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Figure 6.9: In this figure τ i=6
γ /m relating to age-class C6 (black curve) and filtered tAR (red curve) is shown

for four sample chromosomes of the human genome. Breaks in the curves correspond to centromeric regions,

highly structured with an extremely low density of the used interspersed repeats. The inset box depicts a

whole genome regression of the two aforementioned quantities, resulting in a linear correlation coefficient of

r = 0.67.

the ratio mts

species2/m
ts

hg can therefore be determined from Eq. (6.27):

pt2 vs. hg18 : 1.05 mm8 vs. hg18 : 2.04

cf2 vs. hg18 : 1.29 rn3 vs. hg18 : 2.16 .
(6.28)

We can conclude that the averaged total substitution rate over the time period (−ts, 0) of the

mouse and rat is 2 times larger than for the human genome. Moreover, it differs only by a

factor of 1.3 for the dog and the chimpanzee has nearly the same averaged total substitution

rate than the human.

6.7. Validation of the Model

In this section, the obtained results using the model described in Sec. 6.2 are validated

under three different aspects: first, τγ/m is compared with another estimate discussed in the

literature. Second, a simulation study is performed to check the consistency of the method,

and third, two disjointed sets are formed out of the repeat families and τγ/m is estimated

for both sets. A comparison of those values is done to show the independence of the method

with respect to the used repeat families. Let us start by comparing our results to the tAR
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statistic described in [142]. The results are shown in Fig. 6.9. After normalizing tAR to

reflect variation and applying the same noise filtering technique, Sec. 6.4, a close correlation

between the two estimates are found, having a correlation coefficient of r = 0.67. In addition,

spatially resolved estimates of τ i=6
γ /m (black lines) and the normalized tAR estimates (red

lines) are exemplarily shown for chromosome 1, 2, 16, and 22 in Fig. 6.9. It seems that

the tAR values are mostly smeared out with respect to τ i=6
γ /m. Since, tAR is based on a

human/mouse comparison of interspersed repeats, the estimate therefore suffers from inter-

species convolutions of multiple species substitution rates. This aspect will be discussed in

detail, when the conservation of the substitution rate pattern is addressed in Sec. 6.8.

The second method of verification is a consistency check by a simulation study. To

realize this verification, a simulation procedure is developed that accounts for location-varying

substitution rates and repeat family insertions. Applying this tool allows us to compare the

estimated parameters with the known values. Furthermore, this also allows us to assess the

error for the whole procedure. Starting with a random genomic sequence and subjecting

it to a series of substitution using pre-specified rates results in a final sequence which is

then analyzed using the proposed method. In the formulation of the used model several

simplifying assumptions are made, as discussed in Sec. 6.2. This simulation does not validate

these assumptions. It rather validates the mathematics based on these assumptions and

shows that if the assumptions are true, our estimations are accurate. Questions concerning

the validity of these assumptions with respect to mammalian genomes, and the tolerance of

the model to deviations from this assumptions, are discussed in Secs. 6.5, and 6.6. The main

quantity which needs to be defined is the time dependent local substitution rate

mµ(t) = m(t) + τµ (6.29)

where t denotes time, µ represents a base position (running from 1 to N) and m(t) is the

genome-wide average of mµ(t).

The simulated genome is just a sequence of bases, here represented by the genome status

array bµ which can take one of the four values {1, 2, 3, 4}, again corresponding to A=̂1, C=̂2,

G=̂3, and T =̂4. Initially, N0 = 16 × 106 and the bµ’s are randomly chosen from a uniform

distribution. Furthermore the components pi(t) of the row-vector p(t) are required which

specifies the probability of observing one of the four nucleotide basis at a certain site and

time t. The whole simulation scheme is based on Eq. (6.1) on page 78,

d

dt
pj(t) =

4∑

i=1

pi(t)mµ(t) qij . (6.30)

Applying the Euler method to obtain an update step ∆pj for each time step ∆t and after

inserting Eq. (6.29), we obtain

∆pj = m(t)∆t

(

1 + τµ/m(t)

)
∑

i

pi qij . (6.31)

Similar to the simulation of a stochastic differential equation the Euler method is sufficient

for this simulation [168]. To simplify the notation scaled times are introduced

t∗ = m(t)t and ∆t∗ = m(t)∆t . (6.32)
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As usual, t∗ = 0 refers to the present, while t∗ = −1 lies in the past and is the largest time

we used in our simulation. Thus, the simulated evolution of the synthetic genome starts at

t∗ = −1 and moves towards t∗ = 0. In principle, time increment ∆t∗ could be itself a function

of t∗ if one wishes to include the effect of a variation in m(t). For simplicity a constant global

mutation rate m(t) = m is chosen, with a time increment of ∆t∗ = 5×10−3. Thus, Eq. (6.31)

becomes

∆pj = ∆t∗
(

1 + τµ/m

)
∑

i

pi qij . (6.33)

The simulation now consists of stepping from time −1 to time 0 in increments of ∆t∗, inducing

base substitutions in each step as follows:

1. Denote the value of genome status array bµ(t∗) at position µ by i′.

2. For each i ∈ {1, 2, 3, 4} let pi(t
∗) = δi,i′ .

3. Where for each j ∈ {1, 2, 3, 4} the probability ∆pj(t
∗) is calculated using Eq. (6.33).

4. For each i ∈ {1, 2, 3, 4} let pi(t
∗ + ∆t∗) = δi,i′ + ∆pi(t

∗).

5. Randomly draw the new value for bµ(t∗ + ∆t∗) from the set {1, 2, 3, 4} using the new

probability distribution {p1, p2, p3, p4} at t∗ + ∆t∗.

In addition to the simulation of base substitution, random insertion of repeat families

into the simulated genome are needed. Moreover, to allow the application of RepeatMasker

for the simulation study, 817 repeat consensus sequences from the RepBase [152] are used as

potential insertion sequences. At each instance of time new families are inserted whereas the

members are randomly chosen from the potential candidates and inserted into the simulated

genome at a number of randomly determined locations. By construction, the possibility that

a given family member is inserted into an existing copy the same family is not allowed. But

it is possible that a repeat family is inserted into a copy of a distinct family. The synthetic

genome is divided into 20 chromosomes. Ten new repeat families are inserted into every

chromosome starting at time t∗ = −1, and after every interval of 0.1 time units. The process

of insertion is performed by the following steps:

1. Randomly choose a repeat family from the RepBase database. Multiple draws of the

same family are not permitted. Each family is copied into every chromosome.

2. For each chromosome, randomly pick a value Nc out of 10 ≤ Nc ≤ 170 designating this

number to the amount copies for the family to be inserted.

3. Randomly select Nc different insertion sites for each chromosome using a uniform dis-

tribution.

Therefore, 10 different families at 10 insertion times are used, resulting in an increase of every

chromosome from 16 Mbp to 30 Mbp. Thereby, approximately 50% of the bases in the final
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Rate Transition actual estimation

q1 A→ C and T → G 0.05 0.05 (fixed)

q2 A→ T and T → A 0.05 0.05±0.01

q3 C → G and G→ C 0.05 0.05±0.01

q4 C → A and G→ T 0.05 0.05±0.01

q5 A→ G and T → C 0.15 0.16±0.02

q6 G→ A and C → T 0.15 0.17±0.01

Table 6.4: Results on the consistency of model and simulation. The third column shows the actual transition

rates used in the simulation, where the corresponding estimates are given in column four. Due the fluctuations

introduced by the RepeatMasker the rate estimates are not perfectly reproduced, but an estimation error is

visible. Nevertheless, the estimated rates are compatible with the actual values.

simulated genome are part of interspersed repeats. Next, let us specify the substitution rate

pattern τµ by

τµ = A0 sin
(8πµ

N

)

for µ = 1, · · · , N . (6.34)

After every insertion of new repeats into the genome, the array τµ is updated to assign values

for τµ to those sites µ that have newly entered the genome. This was done as follows: If a

repeat was copied between location µ′ and µ′′, then τµ for all newly created sites between

µ′ and µ′′ was computed from a linear interpolation between τµ′ and τµ′′ . This procedure

reflects our central finding that substitution rates depends on the sequence context.

The outcome of the simulations is analyzed by the RepeatMasker, whose output is then

subject to the proposed computational method. As explained in Sec. 6.2, the method es-

timates the age t∗α for every repeat family, the q-matrix, and most importantly, the local

substitution rate ταγ/m in partition γ (γ = 1, · · · , Z). All these quantities are compared in

the following with the original values that are used as input for the simulation. Table 6.4

summarizes our results for the q-matrix. Here, we observe that all rates are well reproduced.

Next, let us consider the estimated age of all repeats copied into the genome. The actual

age of a repeat family is determined by the time when it was inserted into the genome. In

Fig. 6.10 the estimated age is shown on the y-axis versus its actual age on the x-axis. As

mentioned above, 100 different repeat families are copied into the genome, but almost 240

different families are identified by the RepeatMasker. This discrepancy is a result of the

insertion of repeats within other repeat families, decreasing the chance that RepeatMasker

to find the correct repeat family to the resulting fragments. As it can be seen in Fig. 6.10 the

age estimates are fairly accurate for younger repeats, but the scattering increases with age.

Additionally, the age of older repeats tend to be underestimated. This effect is probably sim-

ilar to the underestimation in age for the rodent lineage, as discussed in Sec. 6.6. Moreover,

it should be remarked that the time estimation for the real genome data are based on much

more mutations. Here, we considered a genome having 600 Mbp while the human genome

consists of about 3000 Mbp. It is also noted that a systematic error in the estimation of tα
will also lead to a similar error in xαγ = ταγ + tαm. For the estimation of ταγ this quantity is
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condition of the rodent lineage, as discussed in Sec. 6.6.

again divided in Eq. (6.11) by tα. Thus, errors in tα will partly cancel in the determination

of ταγ . To check the accuracy of the estimated substitution rate, let us divide the the used

time span into ten time slots, β = 1, · · · , 10, centered at t∗β = 0.1, 0.2, · · · , 1. Take all Nβ

repeats having t∗α within slot β as a basis for predicting the substitution rate pattern for the
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Figure 6.11: The local substitution rate as a function of the position on the simulated genome. Black lines

are showing the substitution rate τµ/A0 that has been used in the simulation. The green and red symbols are

representing τγ/A0 the estimated pattern using the proposed method. Here, repeat families belonging to the

age class of the youngest repeats t∗β = 0.1 (red symbols, upper panel) and of the oldest repeats t∗β = 1.0 (green

symbols, lower panel) are considered. Solid lines are showing the smoothed curves obtained from filtering

procedure. A great accordance of the noise filtered curve and the underlying substitution rate pattern is

visible.
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Figure 6.12: Computation of τγ/m using disjoint repeat family sets. Shown is τγ/m against partition

position using two disjoint sets of data: repeat families with σα/mα ≤ 0.24 (black curve, calculated from 407

repeat families), and repeat families with σα/mα > 0.24 (red curve, also calculated from 407 repeat families).

A regression between these two data result in a correlation coefficient of r = 0.895.

corresponding time-window. Thus, we have

τ∗γ,β =
1

Nβ

∑

α∈β

τγ
m
. (6.35)

Figure 6.11 shows τ∗γ,β/A0 obtained for the age class consisting of the youngest (t∗β = −0.1)

and of the oldest repeats (t∗β = −1.0) respectively. Here, the real underlying input function

τµ/A0 defined in Eq. (6.34) is compared with the estimates τ∗γ,β/A0. Noise-filtered curves

(solid lines) are also shown. These curves are showing a good accordance with the underlying

substitution pattern. Furthermore, it verifies that the noise produced by the RepeatMasker

is successfully filtered out by the proposed noise reduction procedure, which shows the con-

sistency of the proposed method.

In Section 6.2 a model for the repeat families was suggested based on the short-burst

approximation, which in consequence leads to the possibility that the age distribution can be

grouped into a phylogenetic tree. However, the following results demonstrate that the model

can cope with deviations from this model. This can be accomplished by separating the entire

set of repeat families into disjoint subsets of having either a low or a high standard deviation

σα/mα of τγ/mα. Imagine that repeat family α1 has a significantly broader age distribution

than α2 but both are having approximately the same average age. Then, the age of repeat

family α1 scatters heavier between the partitions than that of family α2. This enters into
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Eq. (6.11) such that σα/mα fluctuates stronger for α1 than for α2. Hence, the aforementioned

separation is useful to study effects originating from the possibility of having repeats with

a considerable age distribution. Figure 6.12 illustrates this by breaking into repeat families

satisfying σα/mα ≤ 0.24 (black curve) and σα/mα > 0.24 (red line) and calculating the

substitution rate variation pattern for both set. Note that the threshold of 0.24 was chosen

such that an equal number for repeat families occur in both sets. This prevents effects due to

different sample sizes. Only minor variations between the resulting τγ/m estimates are visible,

also reflected by the high correlation coefficient of r = 0.895. We thus find basically the same

substitution rate pattern regardless of the used subset. From this particular comparison

we can also conclude that deviations from the short-burst approximation can be tolerated.

Repeat families with a higher σα can generally be assumed to have had a longer period of

activity and are thus not conform to the underlying model, yet their use seems to have a

negligible effect on the final results. In short, the results of our computations are robust with

respect to the repeat propagation model. Perhaps more importantly, the signal we determine

is independent of the repeats themselves. While repeats provide the data needed to calculate

τγ/m, not a particular feature of the repetitive elements is calculated but the underlying

substitution rate.

6.8. Conservation of τ γ/m and its Relation to the GC Isochore

Structure

So far, mostly methodological issues and the validation of the approach have been discussed.

In this section some new biological insights drawn from the theory are presented. This

is accomplished by investigating the conservation of the substitution rate pattern across

mammalian species and its relation to the GC isochore structure. Whereas, the GC isochore

structure is a common feature to all higher eucaryotic organisms. This structure arises in the

GC content, the proportion of the complementary bases guanine and cytosine with respect to

the total amount of bases for a given spatial partition of the genome. Like the substitution

rate pattern, the GC content is not uniform over the genome, but shows a structure having a

similar length scale than τγ/m. This structure is called GC isochore structure. Interestingly,

for most of the locations the GC content is below 50% and decays exponentially, as shown

below.

Let us concentrate on the first issue, the conservation of the substitution rate pattern. We

argue that local substitution rate is determined by local sequence content. This conclusion is

based on finding an unexpectedly high conservation of the rate pattern both over time and

between mammalian species. Consider a counter-assumption: that substitution rate variation

is dictated by some global or distant feature, e.g., absolute position on a chromosome, or an

external factor affecting the genome in a location-dependent manner. We would then expect

any partition γ to have shifted position within or between chromosomes over the course of

time, and thus be subjected to varying external influences. When calculating τ i
γ/m for older

time classes Ci one should get a value representing the average rate to which these older

repeats of partition γ have been subjected, resulting in a flattened-out curve. By contrast,
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Figure 6.13: A graph showing of the local substitution rate pattern τ i
γ/m against genome position of

chromosome 1 for the human genome and for the seven time classes (i = 1, · · · 7). Again, due to a lack of

sufficient data the centromeric region is left out for the analysis. The conservation of the pattern is apparent

from this figure, since prominent features of the curve are preserved during the time course.

younger age classes should produce curves with a more distinct shape. Hence there should

be little conservation of τ i
γ/m values between time classes. It can be seen from Fig. 6.13

that the above predictions do not hold; the curves derived from older families seem to have

a more distinct shape than those derived from newer families. Further, the pattern is clearly

conserved: partitions subjected to an above- (below-)average substitution rate tend to stay

that way. Given the counter-assumption, it is also expected that lineage-specific rearrange-

ments result in very different τ i
γ/m values for homologous partitions on different organisms.

We instead find a high conservation, illustrated in Figure 6.14, which compares the τ i=6
γ /m

(age class C6) curve of human against a reconstruction of that curve using exclusively mouse-

derived data. Homologous segments are mapped using the BlastZ alignments provided by

the UCSC Browser [166, 169]. In both panels the black curve represents the actual curve for

human. The yellow curve represents a mapping of mouse data using the mouse τ i=6
γ /m values

while the red curve is reconstructed from the mouse τ i=2
γ /m values, derived exclusively from

rodent-specific repeat families. A regression of the C6 reconstructed against actual values

results in a correlation coefficient of r = 0.74; substituting chimpanzee for mouse results in

a correlation coefficient of r = 0.93. We also note the distribution of τ i
γ/m values is highly

conserved between human and mouse for any age class. In short, each prediction following

from the counter-assumption is contradicted by the results. Figure 6.13 shows that as we go

back in time, the local deviation from the mean substitution rate seems to increase (decrease)

in regions where it is already high (low), reflecting an amplifying mechanism that is seem-
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Figure 6.14: In both panels the actual τ i=6
γ /m curve is shown for the human genome across chromosome

1 (black curves), calculated from repeats inserted between 95 and 108 Myr ago. The yellow curve is the

reconstruction derived from mouse repeat data inserted at approximately the same time. Whereas, the red

curve is the reconstruction derived from lineage specific mouse repeat data, inserted 49-61 Myr ago.

ingly incompatible with the genome experiencing large-scale sequence rearrangements. These

apparently conflicting facts can be reconciled only if local characteristics of the nucleotide

sequence are the main cause of variations in substitution rate. The local sequence environ-

ment of each partition is conserved, thus not affected, e.g., by any genomic rearrangement,

as chromosomal rearrangements occur in blocks significantly larger than this length scale.

Consequently, the substitution rate variation is conserved over time and between lineages.

Now, let us consider the second issue, namely the relation of τγ/m to the GC isochore

structure and its decay. The matrix q allows us to derive a relationship between local substi-

tution rate and local GC content and to show that the GC content of the mammalian genome

will eventually reach an equilibrium value, denoted GC∗ following Meuiner and Deuret [170].

Recall that rows and columns of q are ordered corresponding to A, C, G, and T . Using, e.g.,

Tab. 6.4, p. 99 to assign each q1, · · · , q6 to its individual transitions, the full q matrix can be

represented by

q =







−(q1 + q5 + q2) q1 q5 q2
q4 −(q4 + q3 + q6) q3 q6
q6 q4 −(q6 + q4 + q4) q3
q2 q5 q1 −(q2 + q5 + q1)






. (6.36)

For the following, we are not interested in the time-evolution of each base individually, but

of the GC content as a whole. Thus, reduce our description and investigate just the two
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probabilities for the GC and the AT content of partition γ,

pAT
γ = [pγ ]i=1 + [pγ ]i=4

pGC
γ = [pγ ]i=2 + [pγ ]i=3 . (6.37)

In this reduced model, our master equation (6.1) does not change its form, but the vector

pγ in this equation is now replaced by the two-component vector p̂γ = (pAT
γ , pGC

γ ). Due to

symmetry of q, which is induced by the assumed strand-symmetry it is possible to collapse q

to the 2 × 2 rate matrix of the two-state system:

q̂ =

( −(q1 + q5) q1 + q5
q4 + q6 −(q4 + q6)

)

(6.38)

and equation (6.4) becomes

R̂γ,t = mγ(t) q̂ . (6.39)

Repeating the same steps as in Sec. 6.2 leads to an expression for the temporal and spatial

evolution of the GC, as well as the AT content. This allows to calculate the steady state of

the GC content in partition γ by setting the left hand side of the two dimensional version of

Eq. (6.3) equals zero. Denoting this steady state by GC∗
γ , its value yields

GC∗
γ =

[

R̂γ,t

]

2,1
[

R̂γ,t

]

1,2
+
[

R̂γ,t

]

2,1

=
mγ(t) (q1 + q5)

mγ(t) (q1 + q5 + q4 + q6)

=
q1 + q5

q1 + q4 + q5 + q6
. (6.40)

Hence, the equilibrium value of the GC content is independent of γ, and we have

GC∗ =
q1 + q5

q1 + q4 + q5 + q6
. (6.41)

for each γ and for the genome as a whole. Note the implication of Eq. (6.41) when considered

in the context of an elevated CpG dinucleotide substitution rate. The model under discussion

does not explicitly account for these elevated rates. However, it has been shown that it

implicitly accounts for this rate by returning an elevated estimation of q6 in proportion

with the effect of the CpG-specific pair transitions. This extra contribution depends on the

initial CpG content of the genome. If the initial CpG content is increased, q6 is increased

proportionately, hence GC∗ is underestimated when the initial CpG content is particularly

high. Applying Eq. (6.41) to the estimations of q yields

human: GC∗ = 0.324

mouse: GC∗ = 0.349 .

Conservation of q implies that GC∗ should be conserved between organisms. In practice our

estimates differ because the model does not explicitly account for elevated CpG substitution

rates, as mentioned above.
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In order to study the decay of the GC content to GC∗ and its relation to the substitution

rate pattern, let us define pGC,ex
γ (t) to be the difference between the actual GC content of

partition γ and the equilibrium value GC∗. This value is called excess GC content. Next, let

us look at how the GC content is changing over time on a partition-by-partition basis. Using

q̂ instead of q we obtain similar to Eq. (6.2), p. 78:

p̂γ(0) = p̂γ(−T ) exp
(
q̂ mγT

)
(6.42)

Given q̂ from Eq. (6.38), it is straight forward to calculate the (left) eigenvectors and eigen-

values of q̂. From there we can find a matrix B such that q̂ = B−1 λD B, where

λD =

( −λ 0

0 0

)

(6.43)

and

λ = q1 + q4 + q5 + q6 (6.44)

with 0 and −λ being the two eigenvalues of q̂. By substituting q̂ = B−1 λD B into Eq. (6.42)

and performing some algebraic manipulations we obtain

pGC
γ (0) = GC∗ +

(
pGC

γ (−T ) −GC∗
)

exp
(
− λ mγT

)
. (6.45)

Since pGC,ex
γ (t) = pGC

γ (t)−GC∗ and by substituting this expression into equation (6.45) one

arrives at

pGC,ex
γ (0) = pGC,ex

γ (−T ) exp
(
− λmγT

)

= pGC,ex
γ (−T ) exp

(
− λT m τγ/m

)
exp

(
− λT m

)
, (6.46)

where q̂T m (1 + τγ/m) is similar to Eq. (6.5), p. 79, but averaged over T . Equation (6.46)

therefore manifests the exponential decay toward GC∗. Taking the logarithm of this equation,

we obtain the linear relationship

ln pGC,ex
γ (0) =

(
ln pGC,ex

γ (−T ) − λT m
)
− λT m τγ/m . (6.47)

Thus, a logarithmic plot of pGC,ex
γ (0) against τγ/m should result in a line with intercept

b = ln pGC,ex
γ (−T ) − λT m and slope s = λT ∗ = λT m. In Fig. 6.15, τγ/m is regressed

against the GC content for human and mouse, finding the predicted exponential relation

and an apparent convergence value of GC content to the predicted GC∗ values. Whereas, in

Fig. 6.16 the linear relationship in Eq. (6.47) of ln pGC,ex
γ (0) against τγ/m is shown for human

(top panel) and mouse (bottom panel). An almost perfect correlation is found with correlation

coefficients as high as rs = −0.84 for human and rs = −0.81 for mouse, significantly higher

than previously reported [141, 142]. Note that the subscript in rs indicates that Spearman’s

rank correlation coefficient is used, which is robust in the presence of outliers. In the center

panel we account for interaction between the generating data by regressing the human τγ/m

values against the GC-content values calculated from the inter-repeat sequences. The results

are essentially unchanged, with rs = −0.81. Finally, these regressions allow us to estimate

the constants b and s:

human: b = −2.601 ± 0.002 s = −7.16 ± 0.03

mouse b = −2.724 ± 0.002 s = −6.72 ± 0.02
(6.48)
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Figure 6.15: GC content versus local substitution rate on the human and mouse genome. The GC content

in partition γ was correlated with τγ/m, the averaged substitution rate in partition γ. An exponential decay

toward the equilibrium GC content GC∗ is clearly visible.

It can be seen that the genome-wide GC content is decreasing at approximately the same

rate in both human and mouse, showing the expected consistency that validates the main

assumptions of our model. If the matrix q were not independent of time and location,

or if there was a lineage specific effect, we should have found different rates. The small

differences in s = λT m we still observe is likely due to a CpG effect. Because of the strength

of the correlation between pGC,ex
γ (0) and τγ/m, one can take the inverse route and apply

τγ/m = (b− ln pGC,ex
γ (0))/s to estimate τγ/m from the local GC content.

To summarize, it has been shown that the GC content decays exponentially with the

substitution rate as the rate-determining factor. As this factor depends on location, we

can directly observe this decay by plotting local GC content against local substitution rate,

Fig. 6.15. While we cannot conclude any causal relationship, let us note that if rate variation

were the determining factor of GC content variation, then this relationship predicts the

formation of an isochore structure when starting with an ancestor genome that had a uniform

GC content. Alternatively, GC content could be the sequence characteristic determining

substitution rate that we previously argued must exist.
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Figure 6.16: A logarithmic plot of the excess GC content pGC,ex
γ versus the local substitution rate τγ/m

on the human (top panel) and mouse (bottom panel) genome. The graph in the center panel shows again

the GC content on the human genome versus local substitution rate. Where the only difference between the

upper panel is that the GC content now computed from genome regions between the repetitive elements. In

fact, the results are basically the same form the inter-repeat region than for the whole partition. Thereby, the

effect we see is not an artefact of the repeats and therefore provides a substantial understanding of the GC

isochore structure.

6.9. Possible Cause of the Variation

Before discussing a possible mechanism which is capable to explain the findings above and

other results from the literature, a few additional issues about molecular evolution need to

be introduced. First, single nucleotide polymorphisms (SNPs) are variations of the DNA at a

single nucleotide level and within a population of a species. About 90% of all genetic variation

between members of a population are related to SNPs. They play, e.g., an important rôle in

the development of certain diseases and are therefore thoroughly studied for designing new

drugs. However, the density of SNPs varies within the genome. The major difference between

the discussed substitution rate and the SNPs is that substitutions for calculating τ i
γ/m must

have been fixed in the population, whereas SNP are accounting for substitutions within

the population. Second, biased gene conversion (BGC) is attached to the recombination

process, where already existing variations between the genomes of the parents are shuffled

and passed to the offspring. This process allows to achieve a higher biodiversity for the entire

population. Mutations occurring during the recombination may lead to a mismatch (bases

on both strands of the double helix are not complementary) at a certain position of the DNA.

This mismatch, is fixed with preference to G or C which is termed BGC. Again, the intensity

of the recombination process is not uniform over the genome. Finally, the exon density is the

amount base pairs for a given spatial partition on the genome corresponding to exons. Exons
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are sequences of a gene which can be translated into a protein, therefore is a substantial

part of coding DNA which is exposed to selective pressure. The used repetitive elements

are of non-coding DNA. However, there is no ultimate evidence that these regions are not

under selection. Here, selection refers to the procedure that certain substitutions, especially

those in coding regions, may lead to changes which are lethal or causing diseases and are not

fixated in the population. There are therefore regions in the genome which are sensitive to

substitutions in a sense that changes influences the function of the organism; such changes

are suppressed by the evolution. These regions are said to be under selective pressure. Other

regions, however, are insensitive to substitutions such that the substitution rate turns out to

be higher than in regions with selection. This substitution rate is called neutral.

It has been debated whether the variation in substitution rate and GC content is a product

of variations in mutation rates, variation in selective pressure or BGC [147, 170, 148, 171, 172].

In light of previous studies, our results lead to a new conjecture: that substitution rate

variation is caused by fluctuations in the efficiency of DNA repair mechanisms, that rate

variation drives isochore structure formation and GC decay, and that the decay is in part

slowed by BGC. First let us investigate the correlation between τ i
γ/m and exon density, SNP

density, and recombination rates. After controlling for GC content we find no evidence of

a correlation between τγ and exon density (rs = −0.01 at a p-value of 0.18). Since the

exon density can be regarded as a measure for the amount of protein coding regions, this

result indicates that τγ is rather a neutral substitution rate. From a multiple regression of

τ i
γ/m on SNP density and the deCODE recombination rate [173], we find partial correlation

coefficients of rs = 0.40 and rs = −0.41 respectively (p ≪ 10−6, data size: N = 2629). The

values of the q matrix imply a high substitution bias towards GC → AT substitutions, but a

stronger bias must exists at the mutation level. Filipski suggests that the efficiency of DNA

repair varies along the genome [174], an idea that is consistent with our results and would

account for the positive correlation with SNP density. Paired with our previous argument

this would imply that the efficiency of the DNA repair mechanism was determined by local

sequence content. However, Lipatov et al. have recently argued that a fixation bias must

be partly responsible for the variation [172], either in the form of BGC or some unknown

selection pressure on neutral DNA. Duret et al. [175] have observed a higher segregation of

AT → GC. SNPs, implying a fixation bias for GC pairs. It is difficult to distinguish between

the effects of BGC and selection on fixation bias, as BGC is mathematically equivalent to

weak directional selection [176], but we observe the following. BGC, the simpler explanation,

has the effect of correcting GC → AT mutations at a rate proportional to the recombination

rate. If there is a heavy bias towards GC → AT mutations, then BGC would eliminate a

high percentage of mutations in areas of high recombination, thus accounting for the negative

correlation between substitution rate and recombination rate as well as reducing the bias

towards GC → AT substitutions. Continuing with this model, it is tempting to identify the

mutational bias reflected in q as both the cause of GC content decay and the sole determining

factor of the target GC equilibrium value GC∗. The substitution rate pattern τ i
γ/m would

then dictate the local rate at which the decay occurs and defines the isochore structure.

BGC’s tendency to correct GC mutations also implies an effect of BGC on GC content,

resulting in the positive correlation between recombination rates and GC content observed
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in Meuiner and Duret [170]. Such a model provides a simple explanation for both structural

features that is consistent with other studies in the literature.

6.10. Conclusion

In this Chapter a model for the substitution rate variation is formulated, validated, and

applied to five mammalian genomes. Consequently a computational method is established

which allows us to examine the substitution rate relative to the genome mean in time and

location on the genome. Therefore, the method allows to study the rate variation in detail

to understand the underlying causes and its relation to other evolutionary and genomic

features. Moreover, in quantifying the rate variation it is also possible to calculate ages for

various repeat families which has been validated by results presented in other works. The

model relies on the assumption that a time and location invariant relative rate matrix q can

be introduced. On the other side the entire substitution rate pattern can be absorbed into a

single function capturing the time and location dependency of the involved mutation process.

This assumption has been validated by observing basically the same matrices q for several

different mammalian genomes, where deviations can be explained by the possibility that

the methylation state of the genome might have changed after the speciation of the species.

With the additional application of a statistical noise reduction technique the underlying

rate variation pattern can be extracted. In addition, a method is presented to predict the

range over which the substitution rate can be regarded as being roughly constant. This

characteristic length scale is about 1 Mb for human and mouse. Finally, it is shown that

effects from an elevated CpG dinucleotide substitution rate can safely be ignored.

As biological implications of the presented theory, the conservation of the substitution

rate pattern and its relation to other genomic features such as the GC content have been

discussed. The GC content also changes with location to form an isochore structure that

appears to be decaying over time [147, 170, 177]. Elucidating the causes of these variations is

important in understanding the structure and function of the genome. It has been shown that

the pattern of variation in substitution rate is conserved between species and over time. This

suggests that local sequence content is the primary determinant of local substitution rates.

We also showed that the variation in substitution rate has a precise negative exponential

relationship to GC composition. This correlation is considerably stronger than previously

reported [141, 142]. An extension of the model allows us to estimate both the equilibrium

GC-point to which the mammalian genome is evolving and the rate at which it is progressing

to that point. Moreover, it can be seen that these features are also conserved between species.

As a whole, we shed considerable new light on the causes of both features as well as providing

the most accurate method to date for quickly predicting local substitution rates.



7
Summary

The aim of this thesis is to apply concepts of statistical physics and non-linear dynamics

to problems arising in the life sciences. Applying tools and concepts from physics to cope

with the complexity of living organisms is mainly triggered by the enormous advance of

measurement techniques in molecular biology. Thus, the goal of this endeavor is to build up

mathematical models to uncover underlying principles.

In this thesis, the development of theoretical methods and its application to measured data

is addressed, where Chapter 2, 3, and 4 solely deals with the development of such methods.

More detailedly, the problem of detecting phase synchronization between two non-linear self-

sustained oscillating systems is examined in Chapter 2. If there is no adequate model for

the underlying oscillators and the coupling between them, one would like to infer phase

synchronization on the basis of empirical data. This can only be achieved using an appropriate

statistical test procedure which is as process independent as possible. As shown analytically,

this is feasible if the mean phase coherence is used as measure for phase synchronization.

However, the only restriction on the data generating processes is that they have to satisfy the

mixing condition. This restriction is due to the fact that the phase difference of the oscillators

converges to a drift diffusion process with respect to the Skorohod metric, which is referred

to as functional central limit theorem. From the drift diffusion process, the distribution

of the test statistics for phase synchronization is then derived analytically. In fact, this

distribution contains two parameters: the mean angular velocity and the diffusion constant.

In order to apply the derived test to data, these parameters have to be estimated from

the measurements itself. A reliable procedure to estimate the mean angular velocity and

the diffusion constant is thus derived. To underline the relevance of the statistical test, its

performance on simulated data is discussed. These simulations clearly shows, that the derived

test meets the general requirements of a proper statistical test and is in addition powerful to

discriminate phase synchronized systems from unsynchronized after the test has achieved its

asymptotic accuracy.

111
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Due to the functional central limit theorem the mixing property plays an important rôle in

order to derive a test statistic for phase synchronization. However, it is argued in Chapter 3

that mixing of the processes is also necessary to avoid a spurious phase synchronization

between independent systems, even in the limit of infinite data. In spectral analysis, a similar

effect occurs if the mixing condition is not fulfilled. It is shown, that the power-spectrum is no

longer a continuous function, but the presence of delta-distributions arise. Here, the resolvent

function of the Frobenius-Perron operator determines this behavior. Namely, poles of the

resolvent function which are close to the unit circle are producing pronounced resonances

in the power-spectrum. For the bivariate spectral analysis, a loss of mixing results in a

spurious coherency. Therefore, mixing is crucial for synchronization, spectral and cross-

spectral analysis. A deterministic chaotic system which shows effects that can be explained

by a loss of mixing is the Rössler system. An alternative explanation of the observed irregular

behavior is the occurrence of finite size effects, since only finite trajectories of the system

can be used in a numerical study. To discriminate these two possibilities an approximation

to the phase dynamics of the Rössler oscillator is derived. The results obtained from this

approximation strongly suggests that the aforementioned irregular behavior is due to finite

size effects.

Many real-word networks can be represented by graphs. In Chapter 4, a limit theorem for

the degree distribution of growing networks is derived. This result is based on a measure for

the statistical dependencies between finite subgraphs of the network. Analogue to mixing of

dynamical systems as discussed in Chapters 2 and 3, the asymptotical vanishing of statistical

dependencies between the subgraphs is referred to as strong mixing for complex networks. If

the decay of these dependencies is sufficiently fast while the network is growing, the degree

distribution converges to a scale-rich distribution. Since the conditions to obtain a scale-rich

degree distribution are rather strict, the predominate occurrence of scale-free graphs is thus

suggested by this limit theorem.

In contrast to the previous Chapters, the developed theoretical methods are also applied

to measured data in Chapter 5 and 6. The problem of estimating parameters in ordinary

differential equations (ODE) is addressed in Chapter 5. This particular problem is of great

importance if only phenomenological models in terms of ODEs are at hand to describe the

dynamical behavior of the system. Due to the high degree of complexity, biochemical reac-

tions of intra-cellular processes can only be modeled using such phenomenological models.

Here, reaction rates and initial concentrations are unknown parameters. In order to esti-

mate these parameters from measurements, the method of multiple shooting is proposed in

Chapter 5. It is shown that this method clearly outperforms the standard approach in terms

of stability. Additionally, a mathematical analysis of the method shows that the computa-

tional effort is not exploding if rather large systems are considered. Beside the estimation

of unknown parameters, multiple shooting can be consulted to select the best model out

of a set of alternative models. The chosen application exemplarily shows this procedure,

where the phosphoinositide 3-kinase (PI3K) pathway of biochemical reactions is taken into

account. Paired with an a priori analysis, it is shown that the current picture of this pathway

is incomplete. Motivated by a possible extension which is discussed in the literature, the

data can finally be explained by introducing a feed-forward loop to the model. The result
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further shows that this feed-forward loop cannot consist of a single protein but rather a small

reaction network. The identification of this unknown part of the PI3K pathway needs fur-

ther experiments to obtain a deeper insight into this important component of cellular signal

processing.

The rate of evolution in mammalian DNA is an important, but poorly understood com-

ponent of genomic structure. Chapter 6 is devoted to the calculation of the substitution

rate variation across mammalian genomes. It is confirmed that the substitution rate is not

constant over a genome, but fluctuates around the genomic average. It is shown that the

characteristic length scale of this fluctuation is about 1 × 106 base pairs. Since the calcu-

lation of the substitution rate pattern is based on single species interspersed repeats which

entered the genome at different points of time, the temporal evolution of the substitution

rate pattern can also be studied. This is possible for the last 150×106 years. An interspecies

comparison of the substitution rate reveals that the observed pattern is highly conserved,

even though the total substitution rate (genomic average) is about a factor of two higher

for the rodent lineage. The genome averaged rates at which the individual bases undergo

changes are almost identical across the species. This indicates that there is a fundamental

process of substitution, at least in the genomes of mammals. Furthermore, it is known that

epigenetic changes by methylation of the DNA strongly influences the substitution rate of

guanine-cytosine dinucleotide base pairs. This leads to the introduction of nearest neighbor

interactions into the proposed model which is used to calculate the substitution rate pattern.

However, it is shown by numerical simulations and by the sequence data itself that effects

due to these nearest neighbor interactions do not significantly influence the estimate of the

substitution rate variation. Besides the variation in the substitution, a secondary structure

arises in the genome; the local content of guanine and cytosine base pairs (GC content). It

is shown that it is possible to predict the GC content using the substitution rate pattern.

Finally, correlations with other genomic features, such as the recombination rate and the

exon density leads to new insights in the mechanisms behind the substitution rate variation.
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A
Effect of Neglecting the Higher
Substitution Rate of C pG Sites

As introduced in Sec. 6.5 a frequently occurring mutation process in the mammalian genome is

a neighbor-dependent substitution of CpG to TpG/CpA. In [141], Arndt et al. argue that these

substitutions occur at a rate of approximately 40 times larger than the other substitutions. In

this Appendix a model extension is derived taking this elevated substitution rate into account.

This model is named seven-parameter model and is equivalent to the model proposed by

Arndt et al. [153]. Then, it is demonstrated that ignoring the elevated CpG substitution rate

does not substantially affect our results, using the neighbor independent six-parameter model

introduced in Sec. 6.2.

In following, it is more convenient to use p(i; t) instead of [p(t)]i as defined in Section 6.2,

allowing us to rewrite Eq. (6.1) and Eq. (6.4) as

d

dt
p(j; t) =

4∑

i=1

p(i; t)[R(t)]ij

=
4∑

i=1

p(i; t)m(t) [q]ij (A.1)

Since we are only focusing on the estimation of tα m(t) the partition index γ is dropped.

Using the new notation, Eq. (6.2) reads

p(j; 0) =
4∑

i=1

p(i;−tα) [Qα]ij , (A.2)

where [Qα]ij is defined in Eq. (6.10). Now, the complete seven-parameter model will be

formulated and 4 × 4 matrices [Qα]ij are computed using the extended model. This then
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enables us to quantify the effect of neglecting the CpG substitution rates in the six parameter

model.

For setting up the seven-parameter model the distribution p(i, j, k; t) is needed, describing

the probability that a given chain is in state j given that its left or right neighbor is in state

i or k at time t. The conditional distribution p(j|i, k; t) reflects the time evolution of the

center base given that the left base i and the right base k are known. It is further assumed

that the left base can only interact indirectly with the right base. The joint distribution can

therefore be written as

p(i, j, k; t) = pL(i|j; t) p(j|i, k; t) pR(k|j; t) , (A.3)

where the conditional distribution pL(i|j; t) is the probability of finding base i at the left

position given that the center position is occupied by j. The quantity pR(k|j; t) is defined

equivalently for the right position. To study the dynamics of p(i, j, k; t) Eq. (A.3) is differen-

tiated with respect to t and yields

d

dt
p(i, j, k; t) =

d

dt
pL(i|j; t) p(j|i, k; t) pR(k|j; t)

+ pL(i|j; t) d

dt
p(j|i, k; t) pR(k|j; t)

+ pL(i|j; t) p(j|i, k; t) d

dt
pR(k|j; t) . (A.4)

Let [q]ij be the known rate matrix for the single nucleotide substitution process, with its

six independent rate parameters q1, . . . , q6, and let q7 = qCpG be the additional rate of the

accelerated CpG substitutions to either CA or TG (rates which should be equal due to strand

symmetry). Setting up the equations that determine the time dependence of p(j|i, k; t),
pR(k|j; t) and pL(i|j; t) is straightforward if we start from Eq. (A.1) and add just the CpG

related transitions with their special rate qCpG. We obtain:

d

dt
pL(i|j; t) =

4∑

l=1

m(t) [q]li pL(l|j; t) +m(t) qCpG (δ4,iδ3,j − δ2,iδ3,j) pL(2|j; t)

d

dt
p(j|i, k; t) =

4∑

l=1

m(t) [q]lj p(l|i, k; t) +m(t) qCpG (δ2,iδ1,j − δ2,iδ3,j) p(3|i, k; t)

+m(t) qCpG (δ4,jδ3,k − δ2,jδ3,k) p(2|i, k; t)
d

dt
pR(k|j; t) =

4∑

l=1

m(t) [q]lk pR(l|j; t) +m(t) qCpG (δ1,kδ2,j − δ3,kδ2,j) pR(3|j; t) .

Inserting the last three equations into Eq. (A.4) yields the full 64-dimensional master equation

for the joint distribution p(i, j, k; t) of the seven-parameter model:

d

dt
p(i, j, k; t) =

∑4
l=1

(
m(t) [q]li p(l, j, k; t) +m(t) [q]lj p(i, l, k; t) +m(t) [q]lk p(i, j, l; t)

)

+m(t) qCpG (δ2,iδ1,j + δ4,iδ3,j) p(2, 3, k; t)

+m(t) qCpG (δ2,jδ1,k + δ4,jδ3,k) p(i, 2, 3; t)
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− 2m(t) qCpG (δ2,iδ3,j + δ2,jδ3,k) p(i, j, k; t) . (A.5)

This expression is equivalent to the model formulated in [153].

After setting up the seven-parameter model, the effect of ignoring CpG-specific transi-

tions can now be studied. The six-parameter model describes the time-evolution of the four

components p(i; t), while Eq. (A.5) describes the time-evolution of the 64 component vector

p(i, j, k; t). If qCpG is zero both systems of equations produce identical results. Equation (A.5)

then simplifies to Eq. (A.1), a reduction that can be formally achieved by summing over the

probabilities associated with the bases flanking the central base

pM (j; t) =
4∑

i,k=1

p(i, j, k; t) . (A.6)

This equation describes the procedure to reduce the 64 component vector p(i, j, k; t) to a four

component vector pM (j; t), which is suitable for our purpose. If qCpG 6= 0 then Eq. (A.5)

shows a slightly different dynamics. In general pM (j; t) is not equal to p(j; t) and the reduced

description in Eq. (A.1) can only be considered as an approximation of Eq. (A.5). The quality

of this approximation depends both on the ratio of qCpG to the six other rates and on the

relative occurrence of CpG sites on the genome. The effects of this approximation can be

examined by the following procedure:

1. Pick a point in the past, say −tα, as the starting point and choose values for the seven

transition rates q1 to q7.

2. Choose an initial probability p(i, j, k;−tα).

3. Integrate the system of differential equations in Eq. (A.5) and compute distribution

p(i, j, k; 0).

4. Use Eq. (A.6) to marginalize p(i, j, k;−tα), p(i, j, k; 0) and obtain pM (j;−tα), pM (j; 0).

5. Use pM (j;−tα) and pM (j; 0) in Eq. (A.2) to obtain the matrix [Qα]ij .

6. Apply the six-parameter model to estimate tα mα and q from [Qα]ij for comparison

against the known values as chosen in step 1.

Values of tα were sampled from the interval (0, 2] at fixed-length intervals. For q typical

typical values occurring in mammalian genomes are chosen. The four rates q1, . . . , q4 relating

to transversion substitutions are set to 0.05 and 0.15 for those relating to the two transition

substitutions, q5, q6. According to Arndt et al. [141] we use q7 = qCpG to be equal to 2, which

is 40 times higher than the rate at which transversions occur. Next, the initial distributions

have to be specified. For simplicity let us assume that the left and right base having the same

distribution pRL(i;−tα). Now, the joint distribution is calculated, allowing each possible

value for the center base, thus p(i, j, k;−tα) = pRL(i;−tα) pRL(k;−tα) δj,l. Following this

we experiment with assigning values to pRL(i;−tα) in three different ways: first, it is chosen

randomly, where the formation of CpG sites at position one and two, or at position two and
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Figure A.1: Validity of the six-parameter model ignoring the CpG-specific transition rate by comparing the

true age tα mα of repeat family α with the estimate test,α mα using the six-parameter model. Three different

types of initial probabilities were chosen for the solution of Eq. (A.5) corresponding to a model genome on

which CpG sites occur with a probability of 0%, red squares, 12.5%, black circles, and with a randomly chosen

initial probability, blue diamonds.

three, was systematically suppressed, see red squares in Fig. A.1. Second, pRL(i;−tα) was

set to 1/4, so that the probability for a CpG pair at each possible position is 12.5%, black

circles in Fig. A.1, and third, pRL(i;−tα) was randomly chosen using a uniform distribution,

blue diamonds in Fig. A.1.

Figure A.1 shows that for an initial CpG content of 12.5% the age is mostly overestimated.

Thus, neglecting the elevated CpG substitution rate in the six-parameter model leads to

a systematic over-estimation of the repeat age, especially for repeats of intermediate age

tαmα = 0.5. On the other hand, if all CpG sites are initially removed then hardly any effect

remains, only a very small deviation from the bisecting line can be observed. In the case

of the randomly chosen initial probability, the data points are scattered around the smooth

curves of high and zero initial CpG content. The main message of Fig. A.1 is that ignoring the

CpG-specific transitions leads to a time estimation error up to 20% for an initial CpG content

of 12.5%. However, the actual CpG content on the human genome is about one percent,

but was presumably somewhat higher 120 Myr ago. More importantly the estimate for the

age is almost perfect if all CpG sites are initially removed from the data. Further CpG sites

which are formed during the evolutionary span are not significantly affecting our results. This

finding suggests the method to examine the effect an accelerated CpG decay using the real

sequence data by the following procedure: compare the original results with those obtained

after excluding all CpG-sites from the ancestral consensus sequences, as presented in Sec. 6.5.
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