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ABSTRACT: Mitochondria are the power plant of the heart, burning fat and sugars to supply the muscle with 
the adenosine triphosphate (ATP) free energy that drives contraction and relaxation during each heart beat. This 
function was first captured in a mathematical model in 1967. Today, interest in such a model has been rekindled by 
ongoing in silico integrative physiology efforts such as the Cardiac Physiome project. Here, the status of the field of 
computational modeling of mitochondrial ATP synthetic function is reviewed. 
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I. Introduction

The cyclic contraction and relaxation of the beating 
heart that pumps blood through the cardiovascular 
system of the human body is powered by the energy of 
adenosine triphosphate (ATP) hydrolysis. This ther-
modynamic potential, defined as ΔGp = ΔGpo′ + RT 
ln ([ATP]/[ADP]*[Pi]), is maintained more or less 
constant at -58 kJ/mol in living heart muscle.1 This 
energy is largely the excess of the equilibrium poten-
tials of the molecular machines that power contrac-
tion and relaxation of the heart at the cellular level 
(myosin adenosine triphosphatase [ATPase] and 
sarcoplasmic reticular calcium ATPase, respectively; 
-45 and -48 kJ/mol, respectively).2,3 Mitochondria 
are the main source of ATP in cardiac muscle that 
maintains ΔGp at its proper value during work.1 The 
massive amounts of the hydrolysis products adenos-
ine diphosphate (ADP) and inorganic phosphate 
(Pi) that are produced during each heartbeat in the 
cardiomyocyte are taken up from the cytoplasm by 
the mitochondria and chemically coupled to form 
ATP in a metabolic process termed oxidative phos-
phorylation.4 Here, the energy stored in chemical 
bonds in fatty acids, ketone bodies, and monocar-
boxylic acids derived from glycogen breakdown is 
transduced to ATP by a network of proteins, con-

suming oxygen and producing carbon dioxide in the 
process.4Much is known about the molecular details 
of mitochondrial energy transduction (MET).4 The 
inner membrane of the double membrane that en-
velops the mitochondrial matrix plays a central role 
in MET, providing a scaffold for the core molecular 
machinery as well as a physical barrier for protons 
that is instrumental in the chemiosmotic coupling 
of 2 branches in the MET pathway. Specifically, the 
chemical energy in the pyridine and flavine nucleo-
tides (NADH and FADH2, respectively) produced 
by the Krebs cycle in the mitochondrial matrix is 
first transduced to a proton gradient across the in-
ner membrane by a network of protein complexes 
known as the electron transfer chain (ETC). The en-
ergy in this proton motive force is next transduced 
to organic phosphate bonds in ATP molecules by 
the protein complex F0F1-ATPase and is exported to 
the cellular milieu by the adenine nucleotide trans-
locator (ANT).4A complete account of the MET 
pathway should include all of the biochemical and 
electrochemical reactions outlined above as well as 
any interaction with other metabolic, transport, or 
signaling networks in the cell that may modulate its 
function. For example, the MET pathway is coupled 
to glycolysis4 and the urea cycle.4 Likewise, the mi-
tochondrial calcium buffering function5interacts 
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with MET via its effect on the electrochemical po-
tential across the inner membrane (ΔΨ).6 Many of 
the proteins in the ETC recently have been shown 
to be subject to posttranslational modification in-
cluding serine phosphorylation7 and acetylation.8 
Furthermore, the degree of protein phosphoryla-
tion was shown to change in disease states.7 Fi-
nally, it has been well documented that the outer 
mitochondrial membrane is anything but perme-
able to many organic and inorganic ions, including 
ATP,9 and may in fact play a significant regulatory 
role.9,10Capturing this accumulated knowledge of 
MET in a computational model, therefore, presents 
a daunting challenge. Yet demand for such models 
is on the rise in the present era of Systems Biology 
that seeks to deepen our understanding of living or-
ganisms by employing computational modeling to 
integrate the wealth of information in biology.11 A 
computational MET model will be a crucial build-
ing block in any eukaryotic in silico cell or organ 
effort such as that undertaken, for example, by the 
IUPS Physiome Consortium.12 Here, we will review 
the literature on MET computational modeling and 
assess the current status of the field. The aim of this 

review is, however, not to identify “the best” MET 
computational model that is currently available. As 
in any modeling problem, the merit of every model 
that has been developed can and should be judged 
only within the context of the particular biological 
question being investigated, for, in their very essence, 
computational models are quantitative formulations 
of hypotheses.13 Therefore, we will instead review 
what questions about MET have been investigated 
using computational modeling as an investigative 
tool and what progress has been made with respect 
to both understanding the biology of MET as well 
as the science, and art, of modeling itself.

II. Historical Overview: Questions 
and Models of Mitochondrial  
Energy Transduction

Figure 1 shows the block diagram representation of 
the very first mathematical model of MET, devel-
oped by E. M. Chance14 in 1967 that was formulat-
ed in terms of “operational flux expressions” devoid 
of any mechanistic detail of underlying enzyme-
catalyzed reactions to test a preliminary hypothesis 

Figure 1. Block diagram of the metabolic processes included in the computational model of MET. 
The rectangular blocks represent groups of reactions describing the chemistry of the process. Oblong 
blocks represent substrate stores. Intermediates that are common to 2 or more metabolic processes 
are indicated by the relevant arrows, which indicate the direction of metabolic flow. The symbol * in this 
diagram refers to squiggle (~). Reproduced from Ref. 14 with permission from Elsevier Limited.
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for the control of oxidative ADP phosphorylation. 
This pioneering effort was driven in part by the 
technological breakthrough in those days of ma-
chine computing.15 Spurred by the next revolution 
in computing 10 years later (i.e., the desktop com-
puter), in the early 1980s German scholars devel-
oped the first detailed kinetic MET models16–18 and 
laid the foundation for many of the MET models 
in use today (see, e.g., Refs. 6 and 19–22; Fig. 2). 

The increasing sophistication (and thereby com-
plexity) of computational MET models since these 
early days, as measured by the number of model 
parameters, is shown in Table 1. Table 2 shows the 
top 5 category list of biological questions that have 
been addressed by MET models.

The great majority of these models have sought 
to answer the very same question that prompted 
Chance’s pioneering effort: What controls the rate 

Figure 2. Graphic representation of the bioenergetic elements and processes described by the model.  
Abbreviations: Oxphos, oxidative phosphorylation elements; PYR, pyruvate; CoASH, coenzyme A; Ac-
CoA, acetyl-coenzyme A; CIT, citrate; ISOC, isocitrate; αKG, α-ketoglutarate; SCoA, succinyl CoA; SUC, 
succinate; FUM, fumarate; MAL, malate; OAA, oxaloacetate; GLU, glutamate; ASP, aspartate; NADH, 
reduced nicotinamide adenine nucleotide; NAD, oxidized nicotinamide adenine nucleotide; GTP, guani-
dine triphosphate; GDP, guanidine diphosphate;  Pi, inorganic phosphate; UQ, ubiquinone; UQH2, ubi-
quinol; Cytc3+, oxidized cytochrome c; Cytc2+, reduced cytochrome c; PDH, pyruvate dehydrogenase; 
CS, citrate synthase; ACH, aconitase; IDH, isocitrate dehydrogenase; αKGDH, α-ketoglutarate dehy-
drogenase; ScoAS, succinyl CoA synthetase; SDH, succinate dehydrogenase; FH, fumarate hydratase; 
MDH, malate dehydrogenase; GOT, glutamate oxaloacetate transaminase; CI, complex I; CIII, complex 
III; CIV, complex IV; mHleak, proton leak; F1Fo, F1Fo ATPase; ANT, adenine nucleotide transporter; PIC, 
inorganic phosphate carrier; GAE, glutamate/aspartate exchanger; OME, α-ketoglutarate/malate ex-
changer; DCC, dicarboxylate carrier; TCC, tricarboxylate carrier; PYRH, pyruvate-proton cotransporter; 
GLUH, glutamate-proton cotransporter; mKATP, ATP-dependent  K+ channel; mKHE, K+/H+ exchanger; 
mKleak, K+ leak; mNHE, Na+/H+ exchanger; mNCE, Na+/Ca2+ exchanger; CaUNI, Ca2+ uniporter; AK, 
adenylate kinase. Reproduced from Ref. 19 with permission from the authors.
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of mitochondrial ATP synthesis? This is not sur-
prising, for various reasons. First of all, mitochon-
drial respiratory control and energy homeostasis 
are fundamental issues in eukaryotic cell biology. 
Secondly, computational modeling is particularly 
well-suited to investigate this type of problem in 
the philosophical tradition of Occam’s razor; that is, 
start by capturing the simplest hypothesis in a math-
ematical formulation and then test its predictions 
against experimental observation. Indeed, between 
1985 and 1995, detailed kinetic MET modeling 
was all but abandoned in favor of highly simplified, 
lumped (i.e., single equation) MET models to test 
various respiratory control hypotheses2,23–30 (but see 
also Refs. 31 and 32). Specifically, feedback (i.e., 
mediated by secondary reporters of ATP turnover 
changes such as the cellular concentrations of ADP 
and Pi27–32) versus feed-forward (i.e., mediated by 
primary reporters such as the calcium concentra-
tion in excitable tissues27–29) respiratory control 
mechanisms were investigated heavily. Notably, this 
particular episode and direction of MET model-
ing was led by biochemists and physiologists rather 
than mathematicians and biologists, driven either 
by a desire to understand revolutionary in vivo 
observations of ATP metabolism in skeletal and 
cardiac muscle by 31P nuclear magnetic resonance 
spectroscopy23,26–30 or by the surge of interest at the 
time in Metabolic Control theory.2,25 

The present era of Computational and Systems 
Biology has witnessed a return to detailed compu-
tational MET modeling, led in part by mathemati-
cians and bioengineers (see, e.g., Refs. 19–22 and 
33). This has resulted in an explosion of complexity 
of the models (Table 1). First, Magnus and Keizer6 
introduced calcium and sodium transport in MET 
modeling to study its interaction with energetics. 
Cortassa and coworkers21 next introduced a de-
tailed kinetic model of the Krebs cycle to test quan-
titatively the contribution of feed-forward control 
of mitochondrial respiration to energy balance in 
cardiomyocytes mediated by calcium stimulation of 
substrate oxidation.* The relevance of their conclu-
sions was, however, hampered by the poor homeo-
static performance of the model with respect to the 
intramitochondrial redox potential during active 
respiration.21 Beard20 instead opted to incorporate 
new insights on Pi stimulation of MET and omit 
any calcium transport to test if feedback control 
of respiration suffices to explain energy balance in 
cardiomyocytes. A more fundamental advance in 
MET modeling introduced by Beard20 has been 
in the model design itself: by its rigorous rooting 

*Korzeniewski also explored this respiratory control 
mechanism in his numerical studies of energy bal-
ance in striated muscle (e.g. [31;32]) but using phe-
nomenological rather than mechanistic modeling.

TABLE 1. Overview of the Number of State Variables and Parameters, Including Metabolite Poolsizes, 
in Various Computational Models of Mitochondrial Energy Transduction

Model No. of State Vari-
ables 

No. of Parameters Reference

Chance 1967 9 17 14

Bohnensack 1981 8 20a 16

Holzhutter 1985 9 27 17

Magnus & Keizer 1997 3 52 6

Cortassa 2003 12 99 21

Wu 2007 64 210 22

Bazil 2010 73 359 19
a The article explicitly reports 14 parameters; careful inspection of the model, however, shows that 6 
more quantitative assumptions/relations were used in the simulations.16
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in biophysical principles to gain thermodynamic 
constraints on the solution space, the physiologi-
cal behavior of the MET model was improved 
greatly.19,22 An important outcome of this work was 
the finding that the predicted stationary states of 
energy balance in cardiac and skeletal muscle were 
in good agreement with experimental data.22,34 This 
result was taken as strong evidence that feedback 
control of respiration is the principle metabolic 
control mechanism in MET.35 

Although the investigation of metabolic con-
trol in MET undoubtedly has benefitted from 
the explicit, quantitative formulation and test 
of leading hypotheses that is at the very heart of 
computational modeling,13 several trends in recent 
MET modeling warrant some caution. First and 
foremost, the rate at which the molecular detail and 
complexity of MET models has recently been ex-
panding (Table 1) has far exceeded the rate at which 
the experimental database supporting MET model 
parameterization and validation has expanded. For 
example, the most recent adaptation and expan-
sion of the 2007-generation MET model from the 
Beard group22 by Bazil and colleagues19 required an 
increase of the number of model parameters from 
210 to 359 (Table 1). Of the 210 parameters in the 
original model alone, a total of 151 (60 kinetic pa-
rameters and 91 maximal rate terms) were adjusted 
on the basis of component model fitting to 83 data 
curves retrieved from 9 new independent datasets19 
(see specifically the supplemental material S3 of 
Ref 19). Secondly, many MET models have been 
tested exclusively against sparse datasets of station-
ary metabolic states.19–22,34 That this is indeed a 

concern was demonstrated in a recent test of the 
2006 generation of the Beard MET model against 
rich experimental datasets on ATP metabolism 
dynamics in skeletal muscle.36 The test revealed a 
significant shortcoming in the model with respect 
to mitochondrial ADP sensing.36 The problem was 
fixed partly by reparameterization of the model 
directed by advanced model analysis36 (see section 
V, Model Analysis). Third, the majority of current 
MET models are highly deterministic despite 
many sources of error (e.g., in vitro experimental 
models, problems with identifying parameters) in 
the typically macroscopic kinetic measurements 
that have been used to parameterize the models.37 
The impact of any parameter uncertainties on the 
reliability of the model predictions and any con-
clusions that are drawn on its basis are only rarely 
discussed and even more rarely quantified (see, e.g., 
Ref. 38). In sections III to V of this review, these 
problematic trends will be discussed in more detail.  

Finally, 2 of the other categories of biological 
questions that have driven computational MET 
modeling thus far (Table 2) warrant particular 
mentioning. Specifically, in both cases the question 
arises of whether or not these modeling efforts are 
premature in light of the concerns about contem-
porary MET modeling, raised above. The first cat-
egory entails the subject of reactive oxygen species 
(ROS) production in MET.33–39 Recently, Selivanov 
and colleagues33 developed a computational model 
of the ETC to investigate the well-documented, 
paradoxical elevated ROS production during tissue 
reperfusion. One strikingly complex feature of the 
model is that it generates hundreds of differential 

TABLE 2. Top 5 List of Biological Questions Addressed By Computational Models of Mitochondrial 
Energy Transduction

Biological Question First study Reference Total Articles

Mitochondrial ATP flux control 1967 14 >20

Mitochondrial calcium handling 1997 6 9

Mitochondrial ATP flux capacity 1977 71 4

Mitochondrial ROS production 2009 33 2

Mitochondrial volume dynamics 2010 19 1

Abbreviations: ATP, adenosine triphosphate; ROS, reactive oxygen species.
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equations to model the redox state of complex III 
of the mitochondrial ETC.33 Although the simula-
tions identify an intriguing mechanistic explanation 
of the physiology, the study includes only qualita-
tive validation of key model predictions.33 In an-
other subject category is the MET model proposed 
by Bazil and colleagues19 that was discussed briefly 
already (Figure 2). The authors report that their 
particular modeling effort represents the “next step 
toward a complete physiologically faithful MET 
model” and was used to predict, amongst others, 
mitochondrial volume dynamics during metabolic 
activity.19 From a philosophical point of view that 
Systems Biology seeks to build the framework to 
study the elusive genotype-phenotype relation,11 
there may, in time, indeed be a need for the type of 
“comprehensive” MET model to which the authors 
refer. Though the effort in and by itself was cer-
tainly laudable, the plethora of fundamental as well 
as practical problems in current MET modeling 
that warrant addressing raise some doubts whether 
that time has come.

III. Computational Model Develop-
ment I: Formalisms and Conceptual 
Approaches

The previous section reviewed the variety of ques-
tions in MET that have been studied using compu-
tational modeling. Close inspection of these models 
shows there is also a wide variety in the way these 
models have been formulated, ranging from simple, 
single-equation, lumped models to relatively complex 
models with >50 state variables and >200 parameters 
(Table 1). The principle reason for these differences 
is that the purpose and application are essential for 
the selection of the best mathematical framework.40 
In this section we will discuss some fundamental as-
pects of different model building strategies. 

Approaches in computational modeling can 
be thought of as falling into 2 philosophical cat-
egories12,13,41: inductive versus hypothesis-driven 
science. The former category comprises large-scale 
modeling approaches for which it is assumed that 
important modeling features emerge from their 
simulations and analysis. The latter category aims 

for the simplest model, capturing the key features 
of a system consistent with the level of available 
experimental data. These 2 paradigms also can be 
recognized from the list of MET models presented 
in the previous section. The hypothesis-driven 
approach is easily recognizable among several 
studies investigating the control of mitochondrial 
respiration using single, lumped equation mod-
els,24–26,29,30,42,43 whereas the majority of recent 
work follows an inductive approach, aiming for the 
construction of relatively large-scale mechanistic 
models.6,16,19,21,22,32,33,39,44,45† 

III.A. Hypothesis-Driven MET Modeling

The means by which mitochondrial respiration 
has been thought to be controlled has undergone 
several revisions over the last decades (see a review 
in Ref. 49). Single, lumped equation models have 
been developed to test several of these hypotheses. 
In these studies the mitochondria were reduced to 
a single unit characterized by its input–output be-
havior. This input–output classification refers to a 
classic control scheme in which the inputs reflect 
the primary regulators and the output is mitochon-
drial respiration or ATP production. The math-
ematical equation captured a certain hypothesis 
(primary regulator[s] and their mechanisms of ac-
tion) and, by comparing model simulations against 
available experimental data, it was possible to test 
the hypothesis. The approach is most successful (1) 
when testing a relatively simple, well-defined hy-
pothesis taking into account only primary regula-
tors and (2) if high-quality quantitative data sam-
pling the input–output relation is available.

This strategy has been applied with some suc-
cess to investigate MET regulation in muscle. It has 
resulted in several models describing mitochondrial 
input–output behavior based upon some kinetic,24,29 
hybrid kinetic/thermodynamic,26 or purely thermo-

† In this section we will not discuss the stoichiomet-
ric modeling approach because this technique is not 
commonly applied to this specific problem (but see 
Ref. 46). For extensive reviews about stoichiometric 
modeling the reader is referred to Refs. 47 and 48.



Volume 39, Number 5, 2011

Computational Modeling of Mitochondrial Energy Transduction	 369

dynamic mechanism.30 The need for high-quality 
data was illustrated, for example, by a study by 
Jeneson and colleagues,26 who concluded that the 
quasi linear-sigmoidal description between phos-
phate potential and oxidative phosphorylation flux 
predicted by their hybrid kinetic/thermodynamic 
model was statistically equivalent to a strictly linear 
relation. Consequently, true testing of this model/
hypothesis in vivo was not possible until data with a 
higher sampling density became available.36  

III.B. Inductive MET Modeling

One of the requirements of a hypothesis-driven 
approach is that translation of the hypothesis into 
a mathematical representation is relatively straight-
forward. However, if the hypothesis is already com-
plicated or incomplete at the qualitative, conceptual 
level, translation itself becomes a challenge. In such 
a case an inductive research strategy can provide 
a suitable alternative. By reconstructing the system 
from submodels of its individual components, it 
is not necessary to have a detailed hypothesis be-
forehand; the hypothesis is generated while build-
ing/developing the model (see, e.g., Ref. 19). This 
research strategy often is applied in a mechanis-
tic modeling approach. However, the scope of the 
complexity problem in this approach is daunting. 
For example, with respect to mitochondrial biol-
ogy, recent estimates put the number of proteins 
that make up the organelle hardware at 3000.50–52 
Many of these proteins and their function remain 
to be characterized, including any interaction with 
MET function. 

Mechanistic models seek to reconstruct net-
works in silico based upon quantitative kinetic and/
or thermodynamic information of individual net-
work components. Building computational models 
strictly based upon mechanistic details requires 
quantitative information about reaction rates and 
molecular concentrations. For most processes this 
information is not available and, consequently, 
a more practical approach to mechanism-based 
modeling often is required; biochemical data and 
model parameters often are collected from differ-
ent species, experimental settings, and cell types.53 

Moreover, in case mechanistic information is un-
clear, it is necessary to fill in the gaps with pref-
erably simple mechanisms without having any 
kinetic parameters available.54 Sometimes it is 
possible to clamp model variables at physiologi-
cal values reducing the complexity of the model. 
For example, in MET modeling, mathematical 
descriptions of Pi-transporters in the mitochon-
drial membranes and proton buffering by other 
proteins and metabolites are required, amongst 
others, to make matrix Pi concentration and pH 
state variables. To omit this degree of complex-
ity, these variables were clamped in some MET 
models.6,21,45,55 By applying this type of practical 
solution, multiple semimechanistic MET models 
have been constructed.6,16,19,21,22,32,33,39,44,45 Analyses 
of these models already have yielded valuable new 
insights (see the previous section). 

A characteristic of the mechanistic modeling 
approach is that the hypothesis is generated while 
building the model. This is, for example, clear from 
the work of Bazil et al.,19 who extended an already 
available MET model with the primary purpose of 
advancing the model in addition to investigating a 
specific question. Semimechanistic models reflect 
well the current state of knowledge of the biology; 
also at a conceptual level, the majority of the lead-
ing hypotheses contain gaps, unknowns, and un-
certainties, similar to the computation models. The 
primary difference with a computational model is 
that in a mathematical formulation the uncertainty 
can be explicit. This characteristic is not a weak-
ness, per se; it can be exploited in the process of 
improving the hypothesis. Application of math-
ematical techniques (e.g., sensitivity analysis) al-
lows researchers to identify if model predictions 
are highly dependent on ill-defined, nonmechanis-
tic parts or parameters of the model.40 In such a 
case, reliable and accurate quantification of these 
mechanisms/parameters is essential to improve 
the hypothesis.40 The field is currently at a stage in 
which it can enter this iterative cycle of hypothesis 
refinement/improvement. A fine example of the 
application of this strategy is provided by the Beard 
laboratory, which has started to replace phenom-
enologic descriptions of key parts of their MET 
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model by more mechanistic ones.20,22 For example, 
early generations of their MET model contained a 
phenomenologic lumped tricarboxylic acid (TCA) 
cycle, which later was replaced by a mechanistic 
model considering all TCA cycle intermediates.22 
Similarly, other phenomenological parts of the 
model, for example, ANT and complex I, have 
been substituted more recently by more mechanis-
tic descriptions.56,57 As the complexity of the model 
and underlying hypotheses expand, however, model 
analysis will become less intuitive. Proper applica-
tion of sophisticated mathematical techniques will, 
therefore, be crucial to the success of iterative hy-
pothesis refinement and improvement. Several of 
these techniques will be highlighted in section V 
of this review. 

IV. Computational Model Devel-
opment II: Parameterization and  
Model Testing 

IV.A. Model Parameterization

A major challenge in developing mechanistic mod-
els is model parameterization. The largest mecha-
nistic mitochondrial models that have been de-
veloped contain up to a few hundred parameters 
(Table 1). The majority of the parameter values 
originate from 3 different sources:  (1) experimen-
tally determined values; (2) values estimated based 
upon some experimental data by applying a pa-
rameter estimation algorithm, and (3) values esti-
mated in previous computational studies. Although 
obtaining parameter values from these sources has 
become common practice in the field of computa-
tional biology, this does not imply that all values 
found are reliable. 

A first problem encountered is that parameters 
values have typically been determined in vitro. 
However, in vivo interactions with other agents not 
included in the in vitro assay environment (e.g., the 
cytoskeletal matrix) may affect enzyme behavior 
and influence corresponding kinetic parameters. 
An example of the possible impact of the differ-
ence between in vitro and in vivo conditions is pro-
vided by the work of Teusink and colleagues,58 who 

reconstructed the yeast glycolysis pathway purely 
based upon in vitro kinetic data, but failed to re-
produce in vivo observed behavior with this model. 
Schmitz and colleagues38 recently obtained similar 
results with respect to glycolysis in muscle. 

A second problem is that point values typi-
cally are not available for all model parameters, 
either in the literature or because of practical 
problems encountered when trying to obtain the 
values experimentally. Consequently, inferring the 
unknown values from (dynamic) systems behavior 
by applying a parameter optimization algorithm 
is required. The number of parameter values that 
can be inferred accurately from the data depends 
on the amount of information accessible from the 
data (termed practical identifiability) and the for-
mulation of the model equations (termed structural 
identifiability).37,59 When a parameter is noniden-
tifiable, many of the applied parameter estimation 
algorithms are still able to assign a value to such a 
parameter.60 However, these values are often poorly 
constrained and nonunique and therefore provide 
a potentially unreliable point estimate of the pa-
rameter value.61–63 Current mitochondrial models 
contain many of these nonidentifiable parameters, 
some of which are deeply embedded in the code. 
For example, Bazil et al.19 reported a low sensitivity 
of the 42 adjustable parameters to the experimental 
data used for parameter estimation, suggesting that 
these parameters are poorly constrained. Unfor-
tunately, the uncertainty in parameter estimation 
was not reported explicitly. Without redoing the 
elaborate parameter optimization procedure, it is 
impossible to take into account in future studies. 

IV.B. Model Testing

A frequently used synonym for model testing is 
model validation. Karl Popper64 stated in his fa-
mous book The Logic of Scientific Discovery that in 
the empirical science true validation of a hypothesis 
is not possible; hypotheses can only be invalidated. 
This view is also relevant for computational models, 
which also are hypotheses, albeit in a mathematical 
formulation.13 If model behavior is consistent with 
an observation it only can be concluded that the 
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mechanisms captured by the model are sufficient to 
explain the observation. However, it can never be 
ruled out that another mechanism not included in 
the model is present in vivo. Though true validation 
is, therefore, not possible, model testing against 
independent data is important to gain confidence 
in a model and its predictions. On the other hand, 
failure of a model is less accepted and therefore less 
commonly reported, yet may be equally informative. 
Such failure may indicate a need for an alternative 
mechanisms and/or more complexity. It provides 
opportunities to identify novel functions of such 
added biological complexity and give rise to a new 
iterative cycle of hypothesis refinement. Identifica-
tion of the limitations of a model is, therefore, an 
important step in advancing available models and 
should be included in reports whenever possible.

V. Model Analysis

As described and illustrated in the previous section, 
(computational) analysis of the proposed math-
ematical MET models is an essential step in model 
development and application. Here, 2 topics of 
model analysis and their application in MET mod-
eling are discussed: (2) parameter sensitivity analy-
sis (PSA) and (3) model prediction uncertainty. 

V.A. Parameter Sensitivity Analysis 

The mathematical framework most commonly ap-
plied to model mitochondria consists of a set of 
coupled first-order ordinary differential equation 
(ODE), resulting in a continuous, deterministic 
description of the dynamics. For each molecular 
species in the network (e.g., mitochondrial matrix 
ADP, Pi, H+, and calcium) an ODE is introduced, 
derived from its mass balance. Usually only a sub-
set of these state variables can be experimentally 
observed (the model output[s y) and possibly the 
output of interest is an algebraic function of some 
of the state variables (e.g., mitochondrial ATP syn-
thesis rate). In both local and global PSAs (LPSA 
and GPSA, respectively) the effect of variation in 
parameter values q on model behavior is investigat-
ed. The response of interest of the system output(s) 

needs to be translated into a scalar value M(y, q), 
which subsequently can be analyzed and interpret-
ed. Typical response characteristics that have been 
used include the area under the curve of the output, 
the amplitude and period of oscillation, the devia-
tion from the steady-state values, and the output 
value after a specific amount of time.40 A criterion 
of particular relevance is the sum of squared differ-
ences between the output y 0 for the reference pa-
rameter values 0 and the perturbed system output. 
Similarly the difference between model outcome 
and experimental data can be used. In this case 
there is a direct relation between PSA and param-
eter estimation (see section IV). 

Figure 3 depicts an example of a manifold that 
could emerge when, for varying parameters, func-
tion M is calculated. The black dot represents a 
certain realization of the model, that is, a certain 
choice for the reference model parameter set 0. 
Mathematically, the gradient of M describes the 
local steepness of the function for infinitesimal 
change in one of the parameters and provides the 
basis for LPSA methods. Based on this gradient a 
sensitivity coefficient can be introduced according 
to equation 1:

					  
				        (1)

where θ(i) represents the parameter that is varied 
and δM is the change in M due to the change δθ 
in θ. This relative sensitivity coefficient is similar to 
the control coefficients of metabolic control analy-
sis.2,40 This concept can be extended by allowing the 
infinitesimal change to become finite and of dif-
ferent size. Different individual parameters subse-
quently can be “scanned” in a stepwise manner. This 
univariate analysis is shown as the red line on the 
manifold and as the dots in the bottom plane of 
Figure 3.

LPSA. LPSA has been applied routinely in 
MET modeling studies (see, e.g., Refs. 19, 21, and 
34). For example, van Stiphout and colleagues55 an-
alyzed a mitochondrial model featuring, amongst 
others, a TCA cycle model incorporating calcium 
activation developed by Jafri45 and mitochondrial 
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calcium handling and respiration developed by 
Magnus and Keizer.6 van Stiphout et al.55 identi-
fied that the model behavior (the extent to which 
cytosolic calcium oscillations result in oscillations 
in ATP and ADP through a calcium sensitive mi-
tochondrion) was highly dependent upon only a 
small number of model parameters. Among these 
was a mitochondrial kinetic parameter g introduced 
by Magnus and Keizer6 as a phenomenological fit-
ting parameter to which they assigned a point value 
optimized for their particular biological question. 
Therefore, the van Stiphout55 study teaches an im-
portant generic lesson: integration of component 
models in larger model frameworks (e.g., a MET 
model in a cardiomyocyte electrophysiology model) 
can only be done after careful and thorough exami-
nation of the biological question that each model 
addresses, including any tailored parameterization.

V.B. Model Prediction Uncertainty

Local PSA pertains to a particular point in the pa-
rameter space and one parameter is varied in each 

simulation. Therefore, LPSA identifies a causal re-
lation between parameter changes and model out-
come, assuming an accurate model.  However, values 
of model parameters (e.g., rate constants) and ini-
tial conditions of the ODEs (e.g., concentrations of 
diverse molecules) have been derived, at best, from 
experimental data, but parameters also can occur 
for which assumed values are used, and therefore 
they all have a limited accuracy. To find out which 
of these parameter uncertainties are most critical to 
the models predictions, it is necessary to explore, 
in a probabilistic context, possibilities of nonlinear 
effects from simultaneous parameter variations of 
arbitrary magnitudes. Global PSA offers a means 
to do this. 

Global PSA methods try to explore a large 
part of the parameter space through simultane-
ously varying all parameters, typically between a 
lower and upper bound. By applying a Monte Car-
lo simulation strategy65 sampling parameter values 
randomly from the distributions, it is possible to 
predict a model solution space reflecting the influ-
ence of parameter uncertainty.38 From Fig. 3 it is 

Figure 3. Graphic representation of 2 important aspects of model analysis: parameter sensitivity anal-
ysis and identifiability. The surface represents a manifold in parameter space for the parameters 1 and 
2. For varying parameters either the sensitivity function Sq

M(i) (see equation 1) or the cost function V(q) 
maps the model output y(1, 2) on a scalar value. A contour plot of isolines (lines of equal value) of the 
manifold is projected on the bottom plane, in which the gray represents the height of the surface (black 
is the lowest value, white is the highest value). A and B indicate different minima, of which A is the low-
est. The parameter space is explored between bounds (min and max) for the parameters. The black 
dot represents a certain choice for the model parameters and the dotted lines represent a univariate 
analysis. See the main text for further explanation.



Volume 39, Number 5, 2011

Computational Modeling of Mitochondrial Energy Transduction	 373

clear that multivariate analyses can provide infor-
mation that remains hidden in LPSA. For example, 
in this particular case, GPSA reveals that below 
certain values for 1 and 2 the model simulation does 
not change at all for changes in the parameters (the 
flat stretch of the manifold). The first application 
of GPSA in MET modeling was performed by 
Jeneson and colleagues36 to identify which param-
eters in an early-generation MET model from the 
Beard group34 determine the network sensitivity, 
denoted by parameter nH, to a feedback control 
signal (changes in the extramitochondrial ADP 
concentration, [ADP]). The parameter nH was es-
timated for each of 5000 simulations with different 
parameter values for the MET model and ranked 
according to a Kolmogorov-Smirnov test score 
(Fig. 4). The network sensitivity was found to be 
determined by only a small number of parameters 
and dominated by a single parameter (parameter  
No. 14; Fig. 4). This particular parameter, ANT θ, is 
a phenomenologic partition coefficient of m origi-
nally introduced by Korzeniewski and Froncisz66 in 
a kinetic model of the ATP/ADP exchange reac-
tion catalyzed by the ANT and parameterized by 
fitting of in vitro mitochondrial adenine nucleotide 
uptake data.31 It has since been copied by many 

other computational MET models.34,67 Here, 
GPSA identified that the particular point value for 
this parameter was the principal determinant of the 
MET model sensitivity to ADP. Any uncertainty 
in its value would, therefore ,have a strong impact 
on model performance. Conversely, this informa-
tion turned out to be key in improving the qual-
ity of model prediction of dynamic states of ATP 
metabolism in muscle.36 

In GPSA, statistical analyses of a large num-
ber of model simulations is performed to quantify 
parameter sensitivity. An alternative approach is to 
analyze the size of the predicted solution space for 
a given parameter distribution.38 If the predicted 
model solution space becomes unacceptably large, 
more information and thus new experimental data 
is required. Currently, the majority of the experi-
mental data used for MET model parameteriza-
tion originates from measurements of metabolites 
outside the mitochondrion (e.g., 31P MRS, oxygen 
polarography).68 Because of technological limita-
tions, dynamical measurements of metabolites in 
the inter membrane space and mitochondrial ma-
trix are still relatively rare. The level of detail used to 
model intramitochondrial processes has, however, 
increased rapidly (Table 1). Parameterization and 

Figure 4. Global parameter sensitivity analysis of early generation Beard MET model. Kolmogorov-
Smirnov (K-S) scores of the 19 model parameters (¡) and 5 dummy parameters (à) from the global 
parameter sensitivity anlysis of the model by Jeneson et al.36 for nH, a macroscopic parameter of the mi-
tochondrial transduction function. Solid symbols denote parameters with a significant K-S score (thresh-
old of significance set by the K-S scores of the 5 dummy parameters, parameters 20–24).
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testing of these MET models with only limited 
information regarding these dynamics is very chal-
lenging. Innovative solutions providing the meth-
odology for recording this information will be a 
crucial step in the progress of the field.  

VI. Perspective 

The field of computational modeling of MET has 
witnessed a surge of new activity in recent years. 
Since Chance’s pioneering study more than 40 years 
ago, much progress has been made. Current mod-
els allow for detailed simulation of many molecular 
processes in the pathway including acetyl-coenzyme 
A oxidation in the Krebs cycle, generation of proton 
motive force and electrochemical potential across 
the inner mitochondrial membrane, its interaction 
with anion and cation transport including calcium, 
and, of course, ATP production and export to the 
cellular milieu, as well as osmolarity and associated 
matrix volume changes. Application of these mod-
els to address longstanding biological questions has 
advanced understanding of mitochondrial respira-
tory control,34–36 the interaction of mitochondrial 
calcium buffering function with ATP synthesis 
function of the organelle,6,21,45 mitochondrial swell-
ing during active respiration,19 and paradoxical el-
evated ROS production during reperfusion.33 

This advance has, however, come with a sig-
nificant complexity price tag. The most advanced 
MET model to date features no less than 359 pa-
rameters (Table 1). Many of these have been given 
a point value on the basis of numerical curve fit-
ting to typically noisy and sparse experimental data 
obtained in vitro at nonphysiological temperature 
from mitochondrial populations or membrane 
fractions isolated from various tissues (e.g., muscle, 
liver, heart) from different mammalian species (e.g., 
pigeon, rat, swine) and even yeast.19 This raises 
significant concerns about the reliability of the 
predictions of these highly complex MET models 
and, as a result, any conclusions regarding mito-
chondrial biology and physiology based upon the 
simulations. Beard’s innovative approach to build 
in thermodynamic constraints of the model solu-
tion space20,22,69,70 constitutes one way forward in 

this problem. Numeric approaches such as GPSA 
and parameter distribution sampling (discussed in 
section V of this review) offer a more generic solu-
tion to the problem by allowing exploration and 
quantification of the impact of parameter uncer-
tainty on model behavior and prediction. A recent 
first application of GPSA to MET modeling was 
highly promising and succeeded in rigorous iden-
tification of which parameters governed model 
behavior with respect to a particular aspect of 
metabolic regulation of ATP synthetic function.36 
Standard incorporation of these numeric model 
analysis techniques in any computational MET 
modeling should provide a solid, quantitative in-
formation base to guide (1)which model predic-
tions are significant and therefore have biological 
significance, and (2) what new experimental data 
are required to improve the model. Without such 
a solid information base, any continuation of the 
trend of recent years—that MET model complex-
ity doubles every generation (Table 1)—runs the 
paradoxical risk of yielding less instead of more 
biological information.
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