
Sampling methods for uncertainty analysis 

Simple random sampling 

Simple random sampling involves repeatedly forming random vectors of parameters from 
prescribed probability distributions. A normally-distributed random variable x with mean 
µ and standard deviation σ can be generated by: 
 x* = σ rn + µ          
where rn are normally distributed random numbers with mean 0 and variance 1. 
 A multivariate normal distribution with variance-covariance matrix V can be 
sampled utilising the lower and upper triangular matrix (LU) decomposition method 
(Davis, 1987). The variance-covariance matrix V is first decomposed by Cholesky 
factorization: 

V = L LT          
where L is the lower triangular matrix.  To generate the random variables vector x, 
matrix L is multiplied by vector, rn, of independent normal random numbers with mean 0 
and variance 1: 
 x = L rn + µ .           
 The procedure is repeated for sample size ns, resulting in a set of variables with 
expected mean vector µ and expected variance-covariance matrix: L cov(rn) LT. Since 
the random numbers are independent, the covariance matrix cov(rn) should equal I (the 
identity matrix), 
 L cov(rn) LT = L I LT = L LT = V . 

 

Latin hypercube sampling 

Latin hypercube sampling (LHS), a stratified-random procedure, provides an efficient 
way of sampling variables from their distributions (Iman and Conover, 1980). The LHS 
involves sampling ns values from the prescribed distribution of each of k variables X1, X2, 
… Xk. The cumulative distribution for each variable is divided into N equiprobable 
intervals. A value is selected randomly from each interval (Figure 1). The N values 
obtained for each variable are paired randomly with the other variables. Unlike simple 
random sampling, this method ensures a full coverage of the range of each variable by 
maximally stratifying each marginal distribution. 
 The LHS can be summarized as: 
• divide the cumulative distribution of each variable into N equiprobable invervals; 

• from each interval select a value randomly, for the ith interval, the sampled 

cumulative probability can be written as (Wyss and Jorgensen, 1998): 

 Probi = (1/N) ru + (i – 1)/N 
 where ru is uniformly distributed random number ranging from 0 to 1; 



• transform the probability values sampled into the value x using the inverse of the 

distribution function F-1: 

 x = F-1(Prob) ; 
• the N values obtained for each variable x are paired randomly (equally likely 

combinations) with the ns values of the other variables.  

 

The method is based on the assumption that the variables are independent of each 
other, but in reality most of the input variables are correlated to some extent. Random 
pairing of correlated variables could result in impossible combinations, furthermore 
independent variables tend to bias the uncertainty. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

0.2

0.4

0.6

0.8

1

-2 -1 0 1 2
x1

C
um

ul
at

iv
e 

Pr
ob

ab
ili

ty

0

0.2

0.4

0.6

0.8

1

-2 -1 0 1 2
x2

C
um

ul
at

iv
e 

P
ro

ba
bi

lit

Fig. 1. Example of LHS: Random stratified sampling of variables x1 and x2 at 5 intervals (Left) 
and random pairing of sampled x1 and x2 forming a Latin hypercube (Right). 
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Inducing correlation in Latin hypercube sampling 

Iman and Conover (1982) proposed a method for inducing correlation among the 
variables by restricting the way the variables are paired based on the rank correlation of 
some target values. The method is based on the Cholesky decomposition of the 
correlation matrix. Suppose matrix X is composed of independent random variables with 
correlation matrix I and C is the desired correlation matrix. Matrix C can be written as C 
= P P’ where P is the lower triangular matrix. Similar to the simple random sampling, 
multiplying vector x P’ yield random variables with correlation matrix C.  Therefore the 
objective is to rearrange the input variables close to the target correlation matrix. The 
method is summarised as follows: 
• generate matrix R using Latin hypercube sampling of k variables at sample size ns; 

• calculate T, the correlation matrix of R; 

• calculate the P lower triangular matrix of the target correlation matrix C using 

Cholesky factorization C = P P’  and also Q the lower triangular matrix of T   

 T = Q Q’ ; 
• solve to obtain matrix S such that STS’ = C, which is calculated from S = P Q-1; 

• calculate target correlation matrix R* = R S’, which has a correlation matrix equal to 

C; 

• rearrange the values of each variable in R so they have the same rank (order) as the 

target matrix R*.  

 
Stein (1987) also proposed a method for sampling dependent variables based on the 

rank of a target multivariate distribution.  
• obtain matrix R of k variables at sample size N using simple random sampling;  

• define U the matrix with k columns and N rows containing the order or rank 

corresponding to the target correlation matrix; 

• obtain the Latin hypercube sample xij (i = 1, ..., N; j = 1, ..., k)  by  

 u1 rij
ij j

u
x F

N
− −⎛ ⎞

= ⎜
⎝ ⎠

⎟           

With this shifting (transformation), the sampled values yield an approximately joint 
distribution. See Pebesma and Heuvelink (1999) and Zhang and Pinder (2004) for more 
detail description. 
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